A Look into Combined Cycle Power Plants – Problems, Advantages and Applications.

urs Combined Cycle Power Plants are among the most common type of power generation cycle. Demand of CCP application has risen across board due to the rising energy demand (and consumption) as well as growing environmental awareness. Combined cycle is a matured energy that has been proven to generate much lower CO2 (and other environmental footprints) compared to a traditional fossil fuel steam or gas turbine power generation cycle Consequently, this application is often looked as a “better” substitute compared to other a fossil fuel technologies. That being said, CCP is still a temporary alternative to substitute SPP since although CCP generally is more environmentally friendly, CCP process still requires the combustion of fossil fuel (though at a significantly lower degree compared to SPP) for initial heat/energy source.

The application takes two kinds of thermodynamic cycle in assembly to work together from the same heat source. Fluid Air and fuel enters a gas turbine cycle (Joule or Brayton) to generate electricity, waste heat/energy from working fluid will then be extracted then go through a Heat Recovery Steam Generator and towards steam turbine cycle (Rankine) to generate extra electricity. The main advantage of this cycle combination is the improvement of overall net efficiency (around 50-60% higher compared to each cycle alone), thus, lower fuel expenses. With that being said, net efficiency of a CCP is often inflated especially on systems which use a low-temperature waste heat.

There are two configurations of a combined cycle power plant – single-shaft and multi-shaft. The first configuration has one gas turbine and one steam turbine coupled to one generator and one heat recovery steam generator. A multi-shaft has one large steam turbine, condenser and heat sink for up to three gas turbines — each gas turbine and each steam turbine also has its own generator. Each configuration comes with its own advantages and disadvantages, for example single shaft design has a slightly smaller initial cost and smaller footprint whereas multi-shaft is found to be more economical in the long run due to the number of gas turbine to operate in conjunctions. Though overall it’s hard to say which configuration is best to be applied, judgement should be based on needs and consideration of the designer since each wins and losses in different categories.
Design the optimal combined cycle for your application using AxCYCLE!


2 thoughts on “A Look into Combined Cycle Power Plants – Problems, Advantages and Applications.

Leave a Reply