The Challenges for Turbomachinery Startups

Globalization, increase in defense expenditure by different countries, economic development and growth of air traffic has all resulted in the need for various turbomachinery components. The turbomachinery industry as a whole has seen extensive growth over the last few years and is poised to grow further in the next few decades. The development of Turbomachinery components namely turbines, compressors, pumps, turbopumps, turbochargers are a niche field with the technology limited to just a handful of major players. The recent interest in Un-manned aerial vehicles for military and defense applications, the environmental concerns and rising fuel cost has paved the way for development of small gas turbines and turbomachinery for waste heat recovery systems. Since the market is large and capital cost is not very high due to the equipment size, there is greater interest among technologist and entrepreneurs to step into the business of turbomachinery.photographer-and-plater_1160-733

However, turbomachinery design is still a niche field and require technical expertise, which is again limited. Naturally to get into the league of turbomachinery developers and to compete with established players many startups look at the short cuts which usually is copying of designs from existing players, scaling competitors’ products etc. Though this can help them in getting a product into the market sooner with lower cost on design, this is quite dangerous to the industry as copying designs, scaling etc. results in poor products with performance not being competitive which will lead to the premature killing of the product as a whole. For any startups in turbomachinery, they need to have state of the art product, which can compete with existing players who are well established in the industry.

Read More

An Integrated Design System for Gas Turbines

In my earlier blog titled “Optimizing the Cooling Holes in Gas Turbine Blades, I wrote about how optimizing the cooling flow through turbine blades is important considering both performance and reliability. The design process differs between different designers and depends on a number of factors including expertise, availability of design tools, statistical or empirical data, corporate procedure and so on. That being said, the ultimate goal is to provide a design which is considered optimal. Though the designer is often satisfied on completion of a design and when the machine is put into operation, there is always the feeling  that we could have done better if there were more resources and time. Integrating the entire design process with multidisciplinary optimization provides a great opportunity to arrive at the optimal design rapidly with less manual intervention and effort.

axstream
Figure 1: Integrated AxSTREAM® Platform

Figure 1 shows the integrated approach to design a cooled gas turbine using multidisciplinary tools in an optimization environment. The flow path design starts from the conceptual stage to arrive at the optimal flow path geometry, accounting for a preliminary estimate of the cooling flow. Detailed design requires accurate estimation of the cooling flow considering the actual geometries and the material temperatures. Using ID head and flow simulation tools such as AxSTREAM® NET, the cooling flow can be modelled to produce the optimal geometric dimension in an iterative process to further fine tune the flow path performance. To meet the performance and reliability objectives, multidisciplinary optimization can be achieved via the integrated modules. The process when further integrated with a CAD package can help in generating the optimized geometry that can be taken for prototype development.

Read More

Heat Recovery Steam Generator Design

Heat recovery steam generators (HRSGs) are used in power generation to recover heat from hot flue gases (500-600 °C), usually originating from a gas turbine or diesel engine. The HRSG consists of the same heat transfer surfaces as other boilers, except for the furnace. Since no fuel is combusted in a HRSG, the HRSG have convention based evaporator surfaces, where water evaporates into steam. A HRSG can have a horizontal or vertical layout, depending on the available space. When designing a HRSG, the following issues should be considered:

hrsg-boiler
Figure 1: Schematic of a HRSG boiler
  • The pinch-point of the evaporator and the approach temperature of the economizer
  • The pressure drop of the flue gas side of the boiler
  • Optimization of the heating surfaces

The pinch-point (the smallest temperature difference between the two streams in a system of heat exchangers) is found in the evaporator, and is usually 6-10 °C, which can be seen in Figure 2. To maximize the steam power of the boiler, the pinch-point must be chosen as small as possible. The approach temperature is the temperature difference of the input temperature in the evaporator and the output of the economizer. This is often 0-5 °C.

Read More

Can 1D Tools be Used to Design an HVAC System?

The heating, ventilation, and air-conditioning (HVAC) system is arguably the most complex system that is installed in a house and it is responsible for a substantial amount of the total house energy used. A right-sized HVAC system will provide the desired comfort and will run efficiently. Right-sizing of a HVAC system is the selection of equipment and the designing of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Rightsizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space, however, a full HVAC design involves more than just the load estimate calculation as this is only the first step of the iterative HVAC design procedure. Heating and cooling loads are dependent on the building location, sighting, and the construction of the house, whereas the equipment selection and the air distribution design are dependent upon the loads and each other.

Read More

Importance and Modelling of Internal Combustion Engine Cooling Systems

In an internal combustion engine, combustion of air and fuel takes place inside the engine cylinder and hot gases are generated with temperature of gases around 2300-2500°C which may result in not only burning of oil film between the moving parts, but also in seizing or welding of the stationery and moving components. This temperature must be reduced such that the engine works at top efficienc,  promoting high volumetric efficiency and ensuring better combustion without compromising the thermal efficiency due to overcooling. Most importantly, the engine needs to function both in the sense of mechanical operation and reliability. In short, cooling is a matter of equalization of internal temperature to prevent local overheating as well as to remove sufficient heat energy to maintain a practical overall working temperature.

It is also important to note that about 20-25% of the total heat generated is used for producing brake power (useful work). The cooling system should be designed to remove 30-35% of total heat and the remaining heat is lost in friction and carried away by exhaust gases.

Read More

Using 1D Models to Predict the Thermal Growth and Stresses During The Start up and Shutdown Phase of a Steam Turbine

Steam turbines are not just restricted to conventional or nuclear power plants, they are widely used in combined cycle power plants, concentrated solar thermal plants and also geothermal power plants. The operational requirements of a steam turbine in the combined cycle and CSP’s means that they operate under transient conditions. Even in conventional steam turbines, the market requirements are changing with requirements for faster and more frequent start-up which can result into faster deterioration of the equipment and reduced lifespan. During the startup phase, significant heat exchange takes place between the steam and the structural components that include the valves, rotor and casing. The accuracy of the life prediction is strongly affected and dependent on the accuracy of the transient thermal state prediction [1].

Though the expansion of steam takes place in the nozzles and blades, the influence of the leakage steam during the startup phase is significant with steam expanding through the labyrinths resulting in expansions, condensation, and increased velocities which may even reach supersonic levels. During cold start, the flow is minimal, the temperature of the metal is at room temperature and heat exchange happens between the steam and metal parts resulting in thermal stress.

Read More

Optimizing the Cooling Holes in Gas Turbine Blades

To increase the overall performance of the engine and reduce the specific fuel consumption, modern gas turbines operate at very high temperatures. However, the high temperature level of the cycle is limited by the melting point of the materials. Therefore, turbine blade cooling is necessary to reduce the blade metal temperature to increasing the thermal capability of the engine. Due to the contribution and development of turbine cooling systems, the turbine inlet temperature has doubled over the last 60 years.

thermal-effiency
Figure 1: Variations of Thermal Efficiency with TIT [1]
The cooling flow has a significant effect on the efficiency of the gas turbine. It has been found that the thermal efficiency of the cooled gas turbine is less than the uncooled gas turbine for the same input conditions (see figure 1). The reason for this is that the temperature at the inlet of turbine is decreased due to cooling and therefore, work produced by the turbine is slightly decreased. It is also known that the power consumption of the cool inlet air is of considerable concern since it decreases the net power output of  the gas turbine.

With this in mind, during  the design phase of gas turbine it is very important to optimize the cooling flow if you are considering both the performance and reliability. Cooled Gas turbine design is quite complicated and requires not only the right methodology, but also the most appropriate design tools, powerful enough to predict the results accurately from thermodynamics cycle to aerothermal design, ultimately generating the 3D blade.

Read More

Axial and Mixed Pump Theory

Axial Pump
Axial Pump

Unlike the centrifugal pump, the performance in axial machines is a function of the action of the blade profiles. Because of this, the main approach in design of axial pumps is focused on blade performance.

Impeller blades of axial flow pumps have a double curvature form at the inlet and at the outlet due to the change in diameter from hub to periphery. Absolute flow before and after the impeller and relative flow along the impeller passage are axisymmetric and potential. There is no radial mixing. Under this condition, each streamline is parallel to the axis of the pump. Fluid passes parallel to the pump axis i.e., along the streamline. Continue reading “Axial and Mixed Pump Theory”

What Are Some Factors Affecting Gas Turbine Operation?

Let’s face it, we know the operations of our gas turbines can’t all be perfect, and we’ll run through calculations, feasibility studies and more to pinpoint the exact cause. But before all of that is accomplished, you should keep a list in the back of your mind of what might be causing your loss in performance, based on common factors that affect gas turbine efficiency and more.

Here’s the list. Continue reading “What Are Some Factors Affecting Gas Turbine Operation?”

Page 1 of 11