SuperTruck II Program and Waste Heat Recovery Systems

Familiar to many, the 2011 SuperTruck program was a five-year challenge set by the U.S. Department of Energy to create a Class-8 truck that improves fuel efficiency by 50 percent.  Hoping for even more groundbreaking achievements this time around, the Department of Energy has initiated a second five-year program to bring further fuel-efficiency advancements and near closer to eventual commercialization.  Cummins, Peterbilt, Daimler Trucks North America, Navistar, and Volvo Group remain the five teams involved in this R&D endeavor.  Michael Berube, head of the Energy Department’s vehicle technology office mentioned “SuperTruck II has set goals beyond where the companies think they can be.”  SuperTruck II is looking for a 100 percent increase in freight-hauling efficiency and a new engine efficiency standard of 55 percent.  With such lofty goals, the SuperTruck II development teams will need to tackle improvements in freight efficiencies from all sides.

Figure 1 - Daimler SuperTruck
Figure 1 – Daimler SuperTruck

Material considerations, body aerodynamics, low-resistance tires, predictive torque management using GPS and terrain information, combustion efficiency, and several other improvements methods on the first iteration have demonstrated how the SuperTruck II will require a multi-phase and integrated systems approach to achieve equally successful numbers. However, with an engine efficiency target that is 31 percent above the SuperTruck’s first go around, special attention will be required on engine advancement to achieve an efficiency standard of 55 percent.

One of the main methods apart from auxiliary load and friction reduction is a comprehensive waste heat recovery (WHR) system dedicated to the engine.  From the existing works devoted to waste heat recovery, the following methods of efficiency increase can be highlighted:

  1. Addition of the internal heat recuperation to a WHR cycle
  2. Appropriate working fluid selection
  3. Increment of initial parameters of bottoming cycle up to supercritical values
  4. Maximize waste heat utilization due to the usage of low temperature heat sources
  5. Bottoming cycle complexification or usage of several bottoming cycles with different fluids

Figure 2 - AxSTREAM Platform for Radial Turbine Design
Figure 2 – AxSTREAM Platform for Radial Turbine Design

With regards to fluid selection, no universal organic fluid exists that is suitable for a wide range of ORC applications.  For this reason, each WHR project requires an extensive fluid selection analysis as one of the main design steps.  In general, working fluids are selected based on their thermodynamic properties, thermal stability, and environmental impact/safety.  Amongst the most popular options are water, ethanol, R245fa, and R134a.  Once the proper design range it set for the waste heat cycle, the designer can successfully set which fluid may be the best for its given application.

Later in the design process, the engineer must consider how to design a turbine that will create the optimal amount of power for the selected fluid type and operating ranges.  With high efficiency targets on the SuperTruck II, the proper experience and resources are required to create high-efficiency ORC turbines that can achieve these targets.  It is will be interesting to see what kind of engine advancements and technologies will be utilized from each design team throughout the outset and final completion of the SuperTruck II.  If you would like to learn more about SoftInWay’s AxSTREAM platform for design ORC Turbines in WHR cycles, please visit: http://www.softinway.com/software-applications/heat-balance-design-analysis/ 

References:

http://www.softinway.com/wp-content/uploads/2015/10/whr-based-on-SORC-10-2015.pdf

https://energy.gov/articles/energy-department-announces-137-million-investment-commercial-and-passenger-vehicle

https://www.trucks.com/2016/10/31/supertruck-program-5-year-phase/

https://energy.gov/sites/prod/files/2014/03/f8/deer12_sisken.pdf

 

Foil Air Bearings for High-Temperature Turbocharger Applications

Within the realm of turbocharging, there are a number of different design challenges that influence the design process on both large-scale marine applications and smaller-scale commercial automobile applications.  From aerodynamic loads to dynamic control systems to rotor dynamics and bearing challenges, turbochargers represent a special subset of turbomachinery that requires complex and integrated solutions.  Turbocharger rotors specifically, have unique characteristics due to the dynamics of having a heavy turbine and compressor wheel located at the overhang ends of the rotor. The majority of turbocharger rotors are supported within a couple floating-ring oil film bearings.  In general, these bearings provide the damping necessary to support the high gyroscopic moments of the impeller wheels.  However, there are several disadvantages of working with these oil systems that have allowed different technologies to start to surface for these turbomachines.  With the floating-ring oil models, varying ring speed ratios and oil viscosity changes significantly influence the performance of the rotor dynamic model.

Dan blog bearing for turbochargers
Figure 1 – Floating-Ring Bearing Model for a Turbocharger

The application of oil-free bearings have started to emanate due to the overall consistency of their performance and the minimized heat loss associated with air as the damping fluid. Studies on these bearing types for turbomachinery applications are neither trivial nor unique, as they have seen plenty of exposure within the commercial and military aircraft industries within turbo compressors and turboexpanders. However, the success of these specific applications are due to the fact that these turbomachines operate with light loads and relatively low temperatures. The main design challenges with foil air bearings are a result of poor rotor dynamic performance, material capabilities, and inadequate load capacities at high temperature/high load applications.

Foil Air Bearing
Figure 2 – Foil Air Bearing

Foil air bearings operate based on a self-acting hydrodynamic air film layer during normal operation, but they exhibit serious wear on start up and shut down if not properly attended to. Prior to developing a gas film on start up, these bearings must handle the sliding that occurs between the rotor and the inner surface of the bearings. For this reason, solid lubricants like polymer foil coatings were considered for these bearings. Polymer coatings have a serious temperature restriction which do not allow them to be considered for high-temperature applications above 300 °C. Different chrome oxide based coatings have shown greater performance at higher temperatures. Initial testing of these coatings showed significantly poor performance at lower temperatures of 25 °C and difficulties with adhesion through repeated thermal cycles. However, NASA has developed a new high temperature PS400 formulation of this coating that performs well under different load conditions and between the temperature range of 25 °C and 650 °C. Essentially, the viability of these bearings within the automotive market has become a reality with individualized bearing designs. The question now becomes whether the foil gas bearing manufacturers can penetrate the market from a larger-scale and create a standard for these turbocharger setups to run free of oil altogether. To learn more about the simulation of both floating-ring oil film bearings and foil air bearings using the SoftInWay platform, please visit: http://www.softinway.com/software-applications/bearing-design/

References:

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20000004303.pdf

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090033769.pdf

 

Simultaneous Design for Turbocharger Compressors and Turbine Wheels

AxSTREAM Blade Profiling
Figure 1- AxSTREAM 3D Blade Profiler for Radial Designs

Increasing regulation for reducing emissions has forced the automotive industry to accept different technologies over the years in order to stay ahead of the market. In an industry that is so accustomed to internal combustion engines, new solutions such as electric motors and turbocharger systems have allowed experts in other industries to cultivate an influence in the automotive market. Specifically in the realm of turbomachinery, increased development has gone into designing turbochargers in order to minimize the effect and size of internal combustion engines. Design challenges are inherent in the fact that an engine is a positive displacement device whereas the turbocharger falls under aerodynamic turbomachinery. The two separate machine types have distinctly different flow characteristics, and the proper sizing of a turbocharger for its parent engine requires proper modeling of the engineering system as a whole.

In general, initial turbocharger sizing becomes a matter of obtaining the necessary boundary conditions required for a preliminary design. A thermodynamic cycle analysis of an ICE-Turbocharger system will allow the designer to obtain an initial idea of the bounds

Axmap for turbocharger
Figure 2 – Simultaneous Turbine (color) and Compressor (dotted) Maps – Power vs. MFR (left) & Pressure Ratio vs. MFR (right)

necessary for the compressor and turbine design. Given the engine information, necessary inlet conditions of the compressor such as temperature and pressure, efficiencies required, and heat transfer of the system, the user can then obtain the boundary conditions for the turbocharger compressor and turbine wheels.

From this point, the process becomes an exercise in turbomachinery design and analysis. With SoftInWay’s turbomachinery design and analysis platform, a boundary condition realization of the system eventually manifests into a full 3D design of the turbine/compressor wheel. Once the engineer designs both the turbine and compressor wheels, they will be left with two discrete physical systems. However, these two designs must eventually coincide into a harmonious system that accurately represents the “turbocharger”. In order to facilitate this representation, the user can overlay the different compressor and turbine maps based on a number of varying parameters. Given the Power and Pressure Ratio curves for a number of varying shaft speeds and temperatures, an off-design performance of the turbocharger system can be analyzed via AxSTREAM’s matching module (Figure 2). Another simultaneous analysis of the turbine and compressor wheels must be made on the component that connects them, the rotor. Rotor design, rotor dynamics, and bearings analysis are crucial to a legitimate turbocharger design and will be a topic of a next week’s blog post. If you would like to learn more about turbocharger design and analysis methods, please follow this link

References:
http://www.automotive-iq.com/engine/articles/high-boost-and-two-stage-turbo-power-systems

Axial Compressor Challenges in Hyperloop Designs

Back when the California high-speed rail project was announced, Elon Musk (CEO of SpaceX and Tesla Inc. and perhaps the most admired tech leader of present day) was not only disappointed with this project, but also introduced an alternative to this system called the Hyperloop in 2012.  Since the abstract of this project was introduced, many engineers around the world have started to evaluate the feasibility of this “5th Mode of Transportation”.

Hyperloop Alpha Conceptual Design Sketch
Hyperloop Alpha Conceptual Design Sketch

The general idea for the Hyperloop consists of a passenger pod operating within a low-pressure environment suspended by air bearings.  At the realistic speeds estimated by NASA of 620 mph, the pod will be operating in the transonic region.  While Japan’s mag-lev bullet train has succeeded at achieving speeds of up to 374 mph, the scale and complexity of a ground transportation system rising above 600 mph bring to surface an unusual number of engineering challenges. As well, brand new designs such as the one proposed by Musk have a certain amount of risk involved due to this technology inherently having no previous run history on a large scale.

Of the many concerns with his original design, perhaps the largest resides on how to design and operate the axial compressor in front of these pods. The supposed function of the compressor is two-fold. The first function would be to overcome the Kantrowitz limit. Musk uses an analogy between the pod and tube and a syringe:

“Whenever you have a capsule or pod (I am using the words interchangeably) moving at high speed through a tube containing air, there is a minimum tube to pod area ratio below which you will choke the flow. What this means is that if the walls of the tube and the capsule are too close together, the capsule will behave like a syringe and eventually be forced to push the entire column of air in the system. Not good.”

Aero Booster
Figure 2 – Safran Aero Boosters Low-Pressure Compressor – Assembly View

An onboard compressor in front of the pod will allow the collected column of air traveling in front of the pod to flow through the system without compromising the increasing velocities of the pod. A second function of the compressor would be to supply air to the air bearings that support the weight of the capsule throughout the passage.

Traditionally, axial compressors are coupled with a complimentary turbine at the exhaust that provides mechanical power to the compressor. In the hyperloop, the proposed compressor arrangement will be driven by electric motors instead of turbines. This is a relatively new design that has only been tested on a handful of electric powered jet aircrafts for research purposes. Furthermore, Musk proposed a compression ratio of about 20:1, which would require several compression stages for an axial compressor arrangement and an intercooler system. The temperature increases resulting from this high order compression require a complex cooling method or a traditional steam pressure vessel for the proper dumping of hot air. A final challenge on the compressor end would be the fact that it will be operating at a very low pressure. Only a handful of companies like Safran Aero Boosters have the necessary experience with low-pressure compression.

In general, while this new proposed mode of transportation is very exciting and innovative from an engineering standpoint, the following challenges specific to the on-board compressor will require serious collaborations amongst the leaders in the compressor design industry:

  • Electric Motor Driven Compressor
  • High Compression Ratio – 20:1
  • Complex intercooler system
  • Low-Pressure Compression Environment

If you would like to learn more about SoftInWay’s integrated platform for axial compressors, please visit our axial compressor page

Surge Conditions of Centrifugal and Axial Compressors

Centrifugal and axial compressors must operate within certain parameters dictated by both the constraints of the given application as well as a number of mechanical factors.  In general, integrated control systems allow compressors to navigate dynamically within their stable operating range.   Typical operating ranges for compressors are represented on a plot of volumetric flow rate versus compression ratio.  Compressors have a wide number of applications, from household vacuum cleaners to large 500 MW gas turbine units.  Compression ratios found in refrigeration applications are typically around 10:1, while in air conditioners they are usually between 3:1 and 4:1.  Of course, multiple compressors can be arranged in series to increase the ratio dramatically to upwards of 40:1 in gas turbine engines.  While compressors in different applications range dramatically in their pressure ratios, similar incidents require engineers to carefully evaluate what is the proper operating range for the particular compressor design.

Dan Post 10
Figure 1- Typical Performance Map Limits – Compressor Ratio (Rc) vs. Volumetric Flow Rate (Qs)

For intensive applications of centrifugal and axial compressors, the phenomenon of surge resides as one of the limiting boundary conditions for the operation of the turbomachine. Essentially, surge is regarded as the phenomena when the energy contained in the gas being compressed exceeds the energy imparted by the rotating blades of the compressor. As a result of the energetic gas overcoming the backpressure, a rapid flow reversal will occur as the gas expands back through the compressor. Once this gas expands back through to the suction of the compressor, the operation of the compressor returns back to normal. However, if preventative measures are not taken by the appropriate controls system or any implemented mechanical interruptions, the compressor will return to a state of surge. This cyclic event is referred to as surge cycling and can result in serious damage to the rotor seals, rotor bearings, driver mechanisms, and overall cycle operation.

Because of surge and other phenomena such as stall, engineers must embed proper control systems that effectively handle different off-design conditions seen in particular compressor arrangements. Depending on the application, certain compressors will rarely operate away from their design point, and such control systems are not necessary. However, in advanced applications such as large gas turbine unit compressors, controls systems allow the compressor to navigate within a range between the choke, stall, minimum speed, and maximum speed limits. The chart seen in Figure 1 describes the operating range of a compressor using a Rc—Qs map. In many cases, an antisurge valve (ASV) working in conjunction with an antisurge PI controller will action open or closed based on varying transient conditions seen on the compressor. For design purposes, it is vital to understand compressor limits in order to properly develop or outsource a compressor based on the performance metrics needed for the application.

Component Matching of Industrial Gas Turbines

An important first step in understanding the gas turbine design process is the knowledge of how individual components act given their particular boundary conditions. However, in order to effectively leverage these individual design processes, a basic knowledge of how these components interact with each other is essential to the overall performance of a gas turbine unit. The power and efficiency outputs of a gas turbine are the result of a complex interaction between different turbomachines and a combustion system. Therefore, performance metrics for a gas turbine are not only based on the respective performances of each turbine, compressor, and combustion system, but also on their interactions. The concept of component matching becomes crucial in understanding how to deal with these systems simultaneously.

two-shaft-gas-turbine
Figure 2 – Simplified Two-Shaft Gas Turbine Arrangement Modeled in AxCYCLE

In general, gas turbines for industrial applications consist of a compressor, a power turbine, and a gas generator turbine designed into one of two arrangements. The first arrangement invokes the use of the gas generator turbine to drive the air compressor, and a power turbine to load the generator on a separate shaft. This two-shaft arrangement allows the speed of the gas generator turbine to only depend on the load applied to the engine. On a single-shaft arrangement, the system obviously cannot exist at varied speeds and the power turbine coupled with the gas generator turbine would be responsible for driving both the generator and the compressor. A simplified diagram of each arrangement is displayed in Figures 1 and 2.

gas-turbine-arrangement-in-axcycle
Figure 1- Single-Shaft Gas Turbine Arrangement in AxCYCLE (Power Turbine and Gas Generator Turbine Considered One Turbine)

The efficiency of gas turbine engines can be improved substantially by increasing the firing temperature of the turbine, however, it is important to remember that the surface of the components exposed to the hot gas must remain below a safe working temperature consistent with the mechanical strength and corrosion resistance of the employed materials. Along with this firing temperature limit, obvious upper bounds exist on the speed of the gas generator due to mechanical failures and reduced lifetimes at high RPMs. These two limits help construct a particular range at which the engine can perform. There is a certain “match” temperature that controls whether the engine will be operating at its maximum gas generator speed (speed toping) or its maximum firing temperature (temperature topping). At ambient temperatures above the match temperature, the engine will operate at its max firing temperature and below its max generator speed. In a similar vein, the engine will operate at its max generator speed and below its max firing temperature at ambient conditions below the match temperature. The match temperature is the ambient temperature at which the engine reaches both limits, and it represents the highest efficiency of that engine.

axmap
Figure 3 – Off-Design Analysis for an Axial Turbine using AxSTREAM’s AxMAP Module

This match temperature is not a trivial or fixed value. Several auxiliary factors cause changes in the gas engine’s match temperature, which must be appropriately accounted for in the gas turbine design. The following factors alter the match point of any gas engine

  • – Changes in the fuel properties
  • – Reduction in compressor or turbine efficiency due to fouling, increased leakage, tip clearance, and material roughness variations
  • – Accessory loads imparted by pumps and other secondary systems
  • – Inlet and Exhaust losses

These auxiliary factors along with the routine changes described by varying ambient temperature, ambient pressure, humidity, load, and power turbine speed all contribute to the complexity involved in properly designing a gas turbine.  Correctly analyzing off-design conditions becomes an art of variable manipulation and generally requires the use of cohesive design and analysis platforms for proper evaluation.  SoftInWay’s integrated software platform allows for streamlined manipulation of your gas turbine design together with immediate off-design analysis based on any prescribed changes.  If you would like to learn about how our AxSTREAM platform assists with off-design analysis in gas turbines and other turbomachinery, please visit our software page.

 

References:

http://turbolab.tamu.edu/proc/turboproc/T29/t29pg247.pdf

Utilization of Supercritical CO2 Bottoming Cycles

In the ever-expanding market for waste-heat recovery methods, different approaches have been established in order to combat the latest environmental restrictions while achieving more attractive power plant efficiencies.  As gas turbine cycles continue to expand within the energy market, one particular technology has seen a significant upsurge due to a number of its beneficial contributions.  Supercritical CO2 (S-CO2) bottoming cycles have allowed low power units to utilize waste heat recovery economically.  For many years, the standard for increasing the efficiency level of a GTU (Gas Turbine Unit) was to set up a steam turbine Rankine cycle to recycle the gas turbine exhaust heat.  However, the scalability constraints of the steam system restrict its application to only units above 120MW.

sco2_cycle
Supercritical Co2 Cycle

HRSGs (Heat Recovery Steam Generators) are water-to-steam boilers which capture the waste heat exhaust of GTUs and convert this heat into energy in the form of high-pressure, high-temperature steam.  These systems can exist in a single or modular fashion depending on the scope of the project.  Modular HRSGs consist of any number of low pressure, intermediate pressure, and high pressure sections.  Each section allows for the extraction of gas turbine exhaust heat using separate steam drum and evaporator sections.  Even in a single pressure HRSG combined cycle, the immense amount of auxiliary equipment, the high installation costs, and the frequent maintenance necessary for such a system prevent them from providing viable heat recovery for low power GTUs.

With the introduction of a different fluid, gas turbines of small and medium size are able to utilize waste heat recovery.  Unlike steam, a supercritical CO2 system is designed to lie in the simply in the gaseous phase.  This single-phase fluid design removes the boiling process necessary for a steam system and therefore results in higher fluid temperatures and cycle efficiencies.  As well, the high energy density reduces the system component’s size and cost, and offers higher system efficiencies, reduced footprints, and significantly easier installation methods.  While all these advantages do exist within a supercritical CO2 system, working with a relatively new fluid presents different challenges that have not had the time and exposure with engineering experts as steam and gas systems have.  In particular, developing a turbine that will most efficiently run under this new fluid presents perhaps the tallest demand within the supercritical cycle. The task becomes to embrace these challenges for the benefit of higher efficiencies, lower O&M costs, and reduced greenhouse emissions.

For a more in-depth look at SoftInWay’s involvement in the S-CO2 sector, please follow this link or contact us for more information

 

References:

  1. http://www.echogen.com/documents/why-sco2-can-displace-steam.pdf
  2. http://www.softinway.com/wp-content/uploads/2015/12/IGTC2015-EvaluationOfGasTurbineExhaustHeatRecoveryUtilizingSCO2Cycle.pdf

Feasibility of Mixed Flow Compressors in Aero Engines

The term, “mixed flow compressor”, refers to a type of compressor that combines axial and radial flow paths. This phenomenon produces a fluid outflow angle somewhere between 0 and 90 degrees with respect to the inlet path.  Referred to as the meridional exit angle, the angled outflow of this mixed flow configuration possesses the advantages of both axial and centrifugal compressors.  Axial compressors can produce higher order efficiencies for gas engines, but they have relatively low-pressure ratios unless compounded into several stages.  Centrifugal compressors can produce high-pressure ratios in a single stage, but they suffer from a drop in efficiency.  The geometrical distinction of mixed flow compressors allows for higher efficiencies while maintaining a limited cross-sectional area.  The trade-off for a mixed flow compressor when introduced to aero gas turbines is that there is an associated weight increase due to the longer impellers needed to cover this diagonal surface.  However, when related to smaller gas turbines, the weight increase becomes less significant to the overall performance of the engine.

Figure 1 - Mixed Flow Compressor Arrangement in AxSTREAM
Figure 1 – Mixed Flow Compressor Arrangement in AxSTREAM

Since the advent of more advanced Unmanned Air Vehicles (UAVs) in the 1990’s, successful integration of gas turbines into these aircrafts required high performance and lower cross-sectional areas. These requirements facilitated the introduction of mixed flow compressors as a strategic alternative. In order to analyze the feasibility of these types of compressors for aero engines, several tactics must be put in place to ensure the design is both effective and reliable. With the use of a structured database and various analysis methods, the designer can ensure an accurate study of this proposed alternative for smaller gas turbines. Design of Experiment (DoE) methods study the effect that multiple variables have on the outcome of the system simultaneously. Multiple parameters must be considered before considering this mixed flow arrangement as a feasible design. The engineer must look at the variation of the pressure ratio and flow coefficient with the meridional exit flow angle. As well, studies on the effects that different pressure ratios, meridional exit flow angles, and power variations have on the mass flow rate of the system are crucial to the design. All of these simultaneous parameters and objectives must be analyzed within a proper database to guarantee an optimized design. To learn more about the DoE optimization methods seen on SoftInWay’s AxSTREAM platform please follow this link: http://www.softinway.com/software-functions/optimization-doe/

 

References:

http://www.nal.res.in/cfdupload/Udocument/15.PDF

https://etd.lib.metu.edu.tr/upload/12611105/index.pdf

 

Achieving Successful 3-Dimensional Hand Tracking Using Quasi-Random Sequences

With the advent of emerging technologies in the space of human-computer interaction (HCI), a prevalent challenge has been finding methods that can accurately represent these motions in real time.  Applications using RGB-D cameras to track movements for consumer-based systems has already been employed by Microsoft in the space of tracking silhouette movements in video games as well as app navigation in the Microsoft Kinect system.  However, tracking methods must evolve in order to successfully represent the complexity of human hand motion.  The two main categories of 3D hand articulation tracking methods consist of appearance-based and model-based tracking.  Appearance-based tracking methods are efficient in the limited space of comparing the present model to a number of already defined hand configurations.  Model-based tracking methods allow the computational configuration to explore a continuous space in which the hand motions are optimized at a high dimensional space in near real time.

scatter-plot
Figure 1 – 256 Points from a Pseudorandom Number Source (Left) Compared to a Quasi-Random Low-Discrepancy Source (Right)

If the computer tracks the human wrist with six degrees of freedom and the other joints accordingly, the ensuing dimensional analysis occurs at a high dimensional space.  A saddle joint (2 DOF) at the base of the each finger plus the additional hinge joints (1 DOF each) at the middle of the finger describes each finger with four degrees of freedom.  In turn, the problem of tracking the articulation of a single hand is performed in a dimensional space of 27.  This highly dimensional problem formulation requires an optimization technique specific to the problem that can provide a uniform coverage of the sampled space.  Quasi-random sequences are known to exhibit a more uniform coverage of a high dimensional compared to random samples taken from a uniform distribution.  The Sobol sequence, developed by Russian mathematician Ilya Sobol, describes a quasi-random low-discrepancy sequence that more evenly distributes a number of points in a higher dimensional space.  Figure 1 represents the distribution discrepancy between a pseudorandom number generation and a quasi-random low-discrepancy Sobol sequence generation.

prelim-design
Figure 2 – High Dimensional Design Space with Given Constraints from Preliminary Design Module in AxSTREAM™

Clearly described in the figure, it is possible to visualize how the quasi-random distribution would employ a better system for tracking hand articulations on 27-dimensional space with much fewer missteps. This particular technology will continue to evolve as the steps of the process are improved. The quasi-random sampling presents a candidate solution in the parametric space of hand configurations, and objectively creates iterations for each frame in which these points are captured. Although the commercial application of this technology still seems rather futuristic, the ability to interact with a computer system by using a number of hand gestures has seen massive improvement in the past years. This technology could potentially represent the next big advancement for upcoming interactive computer systems. Aside from the applications displayed in this article, SoftInWay has been using this technology in order to optimize the highly dimensional system seen in the preliminary design of turbomachines. The solution generator in AxSTREAM® uses a quasi-random search algorithm to successfully distribute a high dimensional system characterized by geometry limits, performance bounds, and different flow conditions. To learn more about the preliminary design module for applications in any turbomachinery platform follow the link – http://www.softinway.com/software-functions/preliminary-design/

Reference:

http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Oikonomidis_Evolutionary_Quasi-random_Search_2014_CVPR_paper.pdf 

Design Challenges of Boiler Feed Pump Turbines in Thermal Power Stations

 The design of a boiler feed pump turbine features some unique characteristics that presents certain challenges in terms of efficiency management, varying operating ranges, and many other features.  In order better understand the accepted designs of Boiler Feed Pump Turbines (BFPTs), it is important to know how the operation of steam turbines used to drive boiler feed pumps can fundamentally improve fossil and nuclear plants.  Much like the design of mechanical drive turbines, feed pump turbines also feature the same thermodynamic objectives as the main turbine and all of the engineering difficulties with optimal blade design, rotor and bearing harmonic conditions, ideal flow path definitions, and so on.  However, some distinctions can make a BFPT design particularly distinct from a regular mechanical drive turbine.  Figure 1 shows a basic heat balance diagram for a plant using a boiler feed pump turbine arrangement.

boiler-post
Figure 1 – Simple Process Diagram for Plant with Boiler Feed Pump Turbine in AxCYCLE®

Inherent in its name, the BFPT must be fully compatible with the boiler feed pump. In other words, the necessary power and speed of the BFPT are determined by the requirements of the pump. In a fully integrated and dynamic system such as this, a large portion of the design requires developing a proper heat balance that will optimize the plant performance. In general, the boiler feed pump turbine uses both steam from the boiler and the main turbine to drive the mechanical shaft connected to the boiler feed pump. This arrangement has proven highly successful in efficiently applying the steam’s thermal energy throughout the plant. In certain arrangements, the BFPT can instead accept steam from cold reheat lines, main unit crossover piping lines, and different extractions from the main turbine. Regardless of the source, one distinction specifically unique to the BFPT is that it must accept steam from two separate sources.

In reference to schematic in Figure 1, the BFPT accepts steam at different pressures from both the boiler and the main turbine.  The low-pressure steam extracted from the main turbine, generally between the high-pressure (HP) turbine and intermediate pressure (IP) turbine sections, will range from 75 psig to 250 psig.  On the other hand, high-pressure steam directed from the boiler can reach pressures as high as 2400 psig, even 3500 psig in supercritical plants.  The ability to utilize two vastly separate steam sources is made possible with the use of two separate inlet designs for the BFPT.  The inlet designs for both the high pressure and the lower pressure sections of the BFPT consist of a series of valves driven by an actuator.  The percentage in which each of these valve sections are open controls the different operating conditions of the plant.  Three main operating points are considered for the feed pump turbine based on solely the lower pressure steam conditions coming from the main turbine.  The conditions with these valves wide open (VWO), 40% of the main unit load (MUL), and the run out point (65% of MUL) all define the operating ranges of this section of the turbine.  The range associated with each of these points allow the engineer to size the correct areas of the LP nozzles.

High-pressure steam from the boiler can be used to start the BFPT without using an auxiliary steam source.  These start up requirements determine the nozzle sizing for the HP steam inlet section.  As seen above, in order to achieve an optimal and efficient design for a BFPT, a number of different intermediate design points must be considered due to the expansive operating range that this particular turbine experiences.  The analysis of different off-design curves becomes crucial in the design of boiler feed pump turbines and is a must for any engineers looking to improve their axial turbine design for boiler feed pump turbines.  To learn more about the full design of process of SoftInWay’s AxSTREAM®, please click here.