The Economics of Power Generation

blog-post-5
Source

Implementation feasibility of power plant design relies heavily on the economic benefits. More often than not, newer technology cannot be implemented due to high cost of electric generation which would not be acceptable in the market since energy is a price sensitive commodity. Sometimes while deciding on a design to choose, we are given a choice between a high initial equipment cost and efficiency versus a lower capital cost with lower efficiency. The designer must be able to choose which design would fit best with their needs and goals.

While running a power generation plant, there are three types of cost that need to be taken into consideration: capital cost, operational cost and financing cost. With point one and two to being of higher priority.

Capital cost generally covers the cost of land, construction, equipment and so on. In other words, capital cost includes all costs in the initial phase of building the plant itself. Capital costs varies from time to time, and from one location to another. Largely, it is a function of labor costs, material costs and regulatory cost –which all is dependent on investment time and the availability of resources as well as the administrative regulation that governs the area. For example, building a power plant in an engineering hot spot like Texas would be much easier then it would be in a residential area such as near a neighborhood in California due to environmental laws as well as construction regulations. Consequently, the time needed to build a plant of the same size in both cases could be significantly different, thus making a noticeable gap in the capital cost. In common practices, capital costs are not necessarily paid in advance as cash, rather sometimes in debt and equity. This fact brings us to financing cost, which would be the cost of paying off the capital expenditure for a period of time.

In practice power plants take into consideration three main things while calculating for operating cost: fuel, labor and maintenance. With that being said, there are many other aspects to consider that could vary based on each individual designs. Operational cost usually varies with the capacity of the plant or with plant operations. In most cases, fuel cost dominates the marginal cost of a conservative power plant, say fossil-fuel, whereas newer technology such as biomass or geothermal, the cost of fuel is generally “free” though higher capital cost. The trade-off between operating and capital cost investment should be taken into consideration while designing a power plant.

For more information and to calculate your power plant costs, check out AxCYCLE Economics!

Reference:

  1. https://www.e-education.psu.edu/eme801/node/530

A Look into Combined Cycle Power Plants – Problems, Advantages and Applications.

urs Combined Cycle Power Plants are among the most common type of power generation cycle. Demand of CCP application has risen across board due to the rising energy demand (and consumption) as well as growing environmental awareness. Combined cycle is a matured energy that has been proven to generate much lower CO2 (and other environmental footprints) compared to a traditional fossil fuel steam or gas turbine power generation cycle Consequently, this application is often looked as a “better” substitute compared to other a fossil fuel technologies. That being said, CCP is still a temporary alternative to substitute SPP since although CCP generally is more environmentally friendly, CCP process still requires the combustion of fossil fuel (though at a significantly lower degree compared to SPP) for initial heat/energy source.

The application takes two kinds of thermodynamic cycle in assembly to work together from the same heat source. Fluid Air and fuel enters a gas turbine cycle (Joule or Brayton) to generate electricity, waste heat/energy from working fluid will then be extracted then go through a Heat Recovery Steam Generator and towards steam turbine cycle (Rankine) to generate extra electricity. The main advantage of this cycle combination is the improvement of overall net efficiency (around 50-60% higher compared to each cycle alone), thus, lower fuel expenses. With that being said, net efficiency of a CCP is often inflated especially on systems which use a low-temperature waste heat.

There are two configurations of a combined cycle power plant – single-shaft and multi-shaft. The first configuration has one gas turbine and one steam turbine coupled to one generator and one heat recovery steam generator. A multi-shaft has one large steam turbine, condenser and heat sink for up to three gas turbines — each gas turbine and each steam turbine also has its own generator. Each configuration comes with its own advantages and disadvantages, for example single shaft design has a slightly smaller initial cost and smaller footprint whereas multi-shaft is found to be more economical in the long run due to the number of gas turbine to operate in conjunctions. Though overall it’s hard to say which configuration is best to be applied, judgement should be based on needs and consideration of the designer since each wins and losses in different categories.
Design the optimal combined cycle for your application using AxCYCLE!

Reference:
http://arthur.shumwaysmith.com/life/content/the_problems_with_combined_heat_and_power_chp_critique_part_3

Introduction to your Supercritical CO2 Power Cycle

Supercritical carbon dioxide cycles have slowly become more popular in the engineering market for electricity generation from various sources. SCO2 is found to be an ideal working fluid for generating power cycles due to its high efficiency –more than supercritical or superheated steam, which results in lower cost of electricity.

Supercritical carbon dioxide is a fluid state where carbon dioxide is operated above its critical point which causes the compound to behave as both a gas and a liquid simultaneously with the unique ability to flow as a gas though at the same time dissolve materials like a liquid. SCO2 changes density over small difference in temperature or pressure, though stay in the same phase; allowing large amount of energy to be extracted at higher temperatures.
sco2
This cycle works in a similar manner to other power generation cycles, and is potentially applicable to wide variety of power generation applications. Hypothetically speaking, any cycle that is running with steam as the working fluid should be able to be upgraded to SCO2 application. In an example for applications using fossil fuel as a main heat source, cycle could be designed as an indirectly-heated non-condensing closed-loop Brayton cycle or directly fired SCO2. In the first event, CO2 is heated non-directly through a heat exchanger. After that, the hot CO2 flow expands in the turbine where the mechanical energy is extracted and any remaining heat is extracted in the recuperator to preheat the CO2 going back to the inlet loop, resulting to high efficiency systems. Where for second arrangement, fossil fuel is directly combusted with oxygen, resulting to steam/CO2 mixture to drive the turbine and generate electricity. The remaining heat in the fluid mixture will be recuperated to preheat the CO2 that is used as the combustion diluent.

There are many benefits that come with SCO2 power conversion technology when compared to other power cycles such as higher efficiency (which correspondent to higher productivity with the same thermal input), environmentally friendly/low greenhouse gas emission, and lower capital cost from reduced size compared to a conventional steam cycle.

Want to optimize your SCO2 cycle? Check out our simulation technology AxCYCLE

References:

http://energy.sandia.gov/energy/renewable-energy/supercritical-co2/
http://breakingenergy.com/2014/11/24/supercritical-carbon-dioxide-power-cycles-starting-to-hit-the-market/
https://www.netl.doe.gov/research/coal/energy-systems/turbines/supercritical-co2-power-cycles
http://www.swri.org/4org/d18/sco2/papers2014/systemConcepts/06-Moroz.pdf

Explaining Geothermal Cycles

blog-post-4

Geothermal energy has become more and more popular globally due to its sustainability and economic stand point. Geothermal power plants run on a variety of temperatures and utilize hydrothermal resources (water/steam and heat) from below the earth surface to generate electricity for people’s daily consumption. Resources can come from dry steam or hot water wells.

There are three kinds of Geothermal cycle for power plants: binary cycle, dry steam and flash steam. Binary cycle power plants use the heat transfer from geothermal hot water to secondary fluids with a low boiling point at the lower end of standard geothermal temperature (225 to 360 F). This heat will cause the secondary fluid to bubble and turn into steam in the heat exchanger, which is then used to turn the turbine. Since water and secondary fluids are kept apart in the cycle, air emission is minimized.

Dry steam is the first geothermal power plant to ever exist from a natural rupture of steam, though considerably uncommon since it demands sustainable underground heat sources to work. The steam used as a working fluid will be piped directly from the underground geothermal reservoirs to turn a turbine and generate electricity.

Flash steam is the most common type of geothermal application, using a underground high-pressure hot water reservoir with a minimum temperature of 360 F, converting it to steam as it moves up to the surface from change in pressure. After steam gets separated from water, it drives the turbines to produce electricity. As the steam cools down and condenses to water, fluid then will be injected back to the reservoir to be reused.

Each one of these system designs comes with its own advantages and disadvantages. For example, binary cycle allows low temperature geothermal sources to be used thus can be used in more wide spread applications. This kind of cycle also does not release geothermal fluid into the system, thus the technology is more environmentally friendly. On the other hand flash steam power plant gives you the advantage of sustainability as well as cost effectiveness in the long run, though it’s rather geographically sensitive. Dry steam application is hard to implement due to the rather rare natural resource used to be able to implement such a cycle, though it generates less of a footprint and require simpler technology which results to lower initial cost. The better application is really dependent on the designer’s needs and goals.

References:

http://large.stanford.edu/courses/2011/ph240/yan2/

http://me1065.wikidot.com/flash-steam-geothermal-power-plants

https://www.nrel.gov/workingwithus/re-geo-elec-production.html

http://energy.gov/eere/geothermal/how-geothermal-power-plant-works-simple

Minimizing Environmental Impacts of Geothermal Energy

blog-post-3-images

Geothermal energy is categorized as a “green energy”, with low emission of approximately 5% of carbon dioxide, 1% H2S, 1% sulfur dioxide and less than 1% of the nitrous oxide of an equal sized fossil or coal power plant. Concentrations of each environmentally disruptive gases are controlled by temperature, composition of fluid, and geological setting. Although most of the geothermal emissions commonly come from existing geothermal resource gas, some percentage of the emission also comes from various processes of the energy conversion process. Non-condensable gases are also emitted as a part of high temperature process of geothermal energy conversion.

According to various studies, the type of geothermal power plant design would really impact the production rate of the mentioned gasses. The selection between open-loop and closed (binary)-loop system is essential while taking into consideration air emission. Geothermal plants to this date are commonly separated into three main cycle design: dry-steam, flash-steam or binary –the first two extensively generate more greenhouse gasses (GHGs) compared to the last. In a binary loop system, gases which are removed from the system will not be transferred to the open atmosphere, instead, after transferring the heat gasses will be run through back to the ground, and result in minimal air pollution. In contrary, open-loop system emits all of the emission gas contained such as hydrogen sulfide, carbon dioxide and many more. There are also different factors which cause the technology to emits gases that are naturally present in the fluid such as fluid chemistry/composition, fluid phase, and geological setting to temperature.

The main types of air emission or contamination within the application of geothermal energy are commonly found to be carbon dioxide and hydrogen sulfide. Hydrogen sulfide reacts to produce SO2 once touched with the atmosphere. SO2 is known for its hazardous nature to health and environment, causing acid rain and respiration problem. Even though the concentration of this gas emission is significantly smaller than a conventional fuel power plant, reduction of hydrogen sulfide emission is still desirable for any conditions. Types of condensers installed to the design determines the ratio between the condensable and non-condensable gas. Consequently, with the right selection of condenser as well as implementing other reduction plans such as installation of adsorption tower, etc, hydrogen sulfide emission could be minimized.

References:

http://www.ucsusa.org/clean_energy/our-energy-choices/renewable-energy/environmental-impacts-geothermal-energy.html#.WBO61fkrLb0

http://georg.hi.is/files/Bjarni%20Mar%20Juliusson%20From%20Wast%20to%20Value.pdf

http://geo-energy.org/reports/GeothermalGreenhouseEmissionsNov2012GEA_web.pdf

http://www.merichem.com/company/overview/technical-lit/tech-papers/geothermal-power-plants

Development of Molten Salt Energy Storage

Over the past couple of years, energy storage technology has significantly evolved to meet engineering demand and political regulations. This wasn’t initially looked as a desirable investment due to the high production cost, however over time, exploration of such technology by bigger companies has driven down the manufacturing cost and generated more demand. With occurrences such as rapid capital raise of smaller start-up companies, to the acquisition of Solar City by Tesla, the market of energy storage is predicted to continue growing. The technology allows for collection of energy produced to be used at a later time. Energy storage systems have wide technology variation to manage power supply – from thermal, compressed air to everyday batteries.

blog-post-2-image-1Molten Salt Usage

The usage of molten salt in thermal energy storage applications has become more common. In commercial solar energy storage, molten salt (from potassium nitrate, lithium nitrate and more) is used in conjunction with concentrated solar energy for power generation. Molten salts are able to absorb and keep heat energy transferred from the fluid mediator, then to transfer it again when it’s needed. In the liquid state, molten salt has a similar state to water. It also has the capacity to retain temperatures of  1000 Fahrenheit. Though efficiency is known to be lower than other storage media such as batteries, (70% vs 90%), the main advantage of the usage of molten salt is lower costs which allows the technology to be implemented in a higher volume production.

How Molten Salt Energy Storage Works

Using solar energy as the main source of energy, heliostats (mirrors used to track sun/solar heat) are used to reflect the solar radiation into an energy receiver at the power plant. Molten salt then is used to collect this heat energy from the concentrated pool. The molten salt will later be stored. When power is needed, hot molten salt is transferred to a HX (or steam generator) to produce steam at a high pressure and temperature. The steam then will be used for electricity generation as the live steam in a conventional steam power plant. After exiting the generator, molten salt will then be transferred back to the thermal storage tank to again absorb energy.

The Benefits of Molten Salt Energy

There are three main benefits of molten salt energy storage – reliability, economic savings and environmental friendliness. While in a liquid state, molten salt improves long term reliability as well as reduces operation and maintenance cost. The capital cost of the material itself is also relatively cheap and easily accessible. Molten salt is also known as a non-toxic compound, thus completely green and comparable to fertilizer.

Reference:

http://www.renewableenergyworld.com/articles/2008/06/storing-the-sun-molten-salt-provides-highly-efficient-thermal-storage-52873.html

Interested in designing and optimizing your molten salt energy storage? Check out AxCYCLE!

Working with Geothermal Heat Pumps

A geothermal heat pump utilizes earth’s thermal energy as a way to manipulate temperature. This is seemingly attractive toward HVAC utilization due to the relatively high efficiency as well as economic benefit. Temperature fluctuations below ground are relatively low as earth absorbs solar energy all year round and insulates the heat underground. Taking advantage of this event, geothermal energy heat pump application for residential and commercial building uses the “underground” as a heat source/sink.

geothermal heat pumps

Source: http://tidewatermechanical.com/geothermal-heat-pumps/

How does geothermal heat pump work?

A heat pump system mainly consists of a heat-pump unit, a pipeline loop functioning as a heat exchanger for a desired area (it can be horizontal, vertical or installed to an aquatic medium), and a duct – to deliver the controlled temperature flow to the consumer.

Fluid is pumped through an installed pipeline loop which transfers heat based on the season. During the hotter season (summer), heat will be absorbed from the air in the building, transferred into the ground and then cooler air will be circulated to the designated area. The contrary happens during the winter. In colder months, heat will be transferred into the fluid from the ground and collected heat will be distributed.

What are the benefit of this technology?

Every unit of electricity used by a geothermal heat pump will be transferred to 5 units of cooling or heating, consequently the geothermal heat pump is much more efficient then, for example air heat pumps. Air heat pump will move the heat from the source to an equal or higher temperature environment, making it less efficient each time the temperature increases. However, since the underground temperature is relatively stable all year round, geothermal heat pumps don’t encounter the same event. Additionally, since the heat can be transferred to any kind of fluid, geothermal heat pumps can also be used as a main water heating source. Since there is no “burning” event during the engineering process with heat pump, there is no carbon monoxide or excess product from this system, making it environmentally friendly as well.

Study your energy cycle using AxCYCLE!

References:

http://energyblog.nationalgeographic.com/2013/09/17/10-myths-about-geothermal-heating-and-cooling/
http://www.climatemaster.com/residential/geothermal-heat-pumps/

The Economic Optimization of Renewable Energy

Global warming has been a very popular topic these days. With up-trend of clean technology and realization that strict climate policy should be implemented, demand of renewable energy sky-rocketed as conservative plants popularity falls. Number of coal power plants have significantly dropped since its peak era, being known as the largest pollutant contributor as it produces nitrogen oxide and carbon dioxide, the technology is valued less due to its impact on nature. Renewable energy comes from many sources: hydropower, wind power, geothermal energy, bio energy and many more. The ability to replenish and having no limit in usage and applications make renewable energy implementations seems attractive. Aside from that, they also produce low emission, sounds like a win-win solution for everyone. Theoretically, with the usage of renewable energy, human-kind should be able to meet their energy need with minimal environmental damage. With growth rate ranging from 10% to 60% annually, renewable energy are getting cheaper through the technology improvements as well as market competition. In the end, the main goal is still to generate profit, though these days taking impact on nature into the equation is just as important. Since the technology is relatively new, capital cost still considerable higher compared to some cases with more traditional (–and naturally harmful) implementations. So the question is: how to maximize the economic potential of a renewable energy power generation plant?

The Economic Optimization of Renewable Energy

Living up to the maximum potential of any power generation plant starts in the design process. Few examples for solar power plant: designers should take into consideration type and quality of panels, it’s important to see the economic-efficiency tradeoff before jumping into investment; looking into the power conversion is also one of the most important steps, one should take into consideration that it would be worthless to produce more energy than the capacity that are able to be transferred and put to use, though too low energy generation would mean less gross income.

Another example, for a geothermal power plant, many studies have shown that boundary conditions on each components play a big role in determining the plant’s capacity and efficiency. High efficiency is definitely desired to optimize the potential of a power plant and minimized the energy loss. Though, should also be compared to the economic sacrifice; regardless of how good the technology is, if it doesn’t make any economic profit, it would not make sense for one to invest in such technology. Low capital cost but high operating expenses would hurt the economic feasibility in the long run, whereas high capital cost and low operating expense could still be risky since that would mean a higher lump sum of investment upfront, which might or may not breakeven nor profitable depending on the fluctuation of energy market.

Modern technology allows investors and the engineering team to make this prediction based on models developed by the experts. SoftInWay just recently launched our economic module, check out AxCYCLE to optimize your power plant!

Reference:

[1] Optimal design of geothermal power plants 

[2] Strategies in tower solar power plant optimization

Variable Speed Compressor for HVAC and Refrigeration.

Even though energy consumption for HVAC and refrigeration system is considerably smaller than most technology applications, energy savings is still desired for many reasons: cleaner technology, saving cost, fuel economy and many more. Improvements in insulation, compressor efficiency and optimization of the cycle can be implemented to achieve better performance. Installation of variable speed drives is one way to optimize the potential of HVAC system.

Refrigeration

Although has been implemented to various HVAC components, variable-speed drive is considerably still one of the “newer” advancements in the compressor industry. These devices are able to precisely control the motor speed and trim/balance systems. Variable speed control compressor gives end-users the comfort of matching the speed to what is needed at the time; giving precise temperature control with less cycling and longer run times. With longer run times, the technology also helps to remove moisture and relative humidity during the summer; or on the other hand during the winter by increasing the speed of compressor, system are able to deliver hotter air.

Compared to fixed compressor, where there are only two options for end-users to set: maximum capacity or completely off; variable speed drives gives the end-user an ability to adjust power output to compressor. The technology also comes with the benefit of less energy wasted from off and on cycle, precise load matching and low amp gradual compressor motor startup; therefore, improving the efficiency on certain conditions.

Compressor

Coupling variable speed drives to centrifugal compressor alter the behavior of the component. Although, not always requiring smaller energy (i.e at or near full load) compared to fixed speed compressor, installation of VSD could really benefit the users in terms of power consumption (i.e at part lift), to optimize even further implementation of both compressor types would benefit both conditions.

Want to learn more? Design your most efficient compressor using AxSTREAM

Reference:

Variable Speed Air Compressor

Reduction In Power Consumption Of Household Refrigerators By Using Variable Speed Compressors

The Impact of Variable-Speed Drives on HVAC Components

Heat pump and refrigeration cycle

 

Turbo pump design parameters for Liquid Propulsion

turbo3aLiquid propellant rocket is known as the most common traditional rocket design. Although the first design was launched back in 1926, liquid propellant rocket remains a popular technology which space exploration companies and institutions study for further improvement.

The implementation of this particular technology is based on a simple idea: fuel and oxidizer are fed through a combustion chamber where both liquids will met and burned to produce launching energy. In order to inject propellant to combustion chamber, a turbo-pump is used to create required pressure . The turbo-pump design and operating parameters contribute to the optimization of both turbo-pump and engine system performance. The pump needs to be designed to avoid cavitation while operates pushing the liquid to combustion chamber.

There are three different cycles which are often used in liquid propellant rocket: the staged combustion, expander and gas generator cycle. Configuration of the turbo-pump strongly relies on the cycle and engine requirements –thus the best design must be selected from options available for the particular cycle’s optimal parameters. For example for staged combustion cycle, where turbine flows is in series with thrust chamber, the application allows high power turbo-pumps; which means high expansion ratio nozzles can be used at low altitude for better performance. Whereas, for implementation of gas-generator cycle, turbine flows are linked in parallel to thrust chamber, consequently, gas generator cycle turbine does not have to work the injection process from exhaust to combustion chamber, thus simplified the design and allows lighter weight to be implemented.

Some parameters are interdependent when it comes to designing a turbo-pump, i.e: turbo-pump cycle efficiency, pump specific needs, pump efficiencies, NPSH, overall performance, etc. Often in practice, pump characteristics will determine the maximum shaft speed at which a unit can operate. Once it’s determined turbine type, arrangements, and else can be selected. Another thing that must be taken into consideration while designing a turbo-pump is how it affect the overall payloads.

Schematic of a pump-fed liquid rocket
Schematic of a pump-fed liquid rocket

Turbo-pump design affect payload in different ways:

  1. Component weight
  2. Inlet suction pressure. As suction pressure goes up, the tank and pressurization system weight increased and reduce the payload.
  3. Gas flowrate, since increase in flowrate decrease the allowable-stage burnout weight, which would decrease payload weight.

All those has to be taken into consideration while trying to select an optimal design of turbo-pump, since it crucially affects overall performance of the engine.

Want to learn more how to design a turbo-pump? Check out AxSTREAM as your design, analysis and optimization tool!

 

References:
Turbopumps for Liquid Rocket Engines
Design of Liquid-Propellant Rocket Engines
Principal of Operation – Liquid-propellant rocket
Staged combustion cycle
Gas-generator cycle