Achieving Successful 3-Dimensional Hand Tracking Using Quasi-Random Sequences

With the advent of emerging technologies in the space of human-computer interaction (HCI), a prevalent challenge has been finding methods that can accurately represent these motions in real time.  Applications using RGB-D cameras to track movements for consumer-based systems has already been employed by Microsoft in the space of tracking silhouette movements in video games as well as app navigation in the Microsoft Kinect system.  However, tracking methods must evolve in order to successfully represent the complexity of human hand motion.  The two main categories of 3D hand articulation tracking methods consist of appearance-based and model-based tracking.  Appearance-based tracking methods are efficient in the limited space of comparing the present model to a number of already defined hand configurations.  Model-based tracking methods allow the computational configuration to explore a continuous space in which the hand motions are optimized at a high dimensional space in near real time.

scatter-plot
Figure 1 – 256 Points from a Pseudorandom Number Source (Left) Compared to a Quasi-Random Low-Discrepancy Source (Right)

If the computer tracks the human wrist with six degrees of freedom and the other joints accordingly, the ensuing dimensional analysis occurs at a high dimensional space.  A saddle joint (2 DOF) at the base of the each finger plus the additional hinge joints (1 DOF each) at the middle of the finger describes each finger with four degrees of freedom.  In turn, the problem of tracking the articulation of a single hand is performed in a dimensional space of 27.  This highly dimensional problem formulation requires an optimization technique specific to the problem that can provide a uniform coverage of the sampled space.  Quasi-random sequences are known to exhibit a more uniform coverage of a high dimensional compared to random samples taken from a uniform distribution.  The Sobol sequence, developed by Russian mathematician Ilya Sobol, describes a quasi-random low-discrepancy sequence that more evenly distributes a number of points in a higher dimensional space.  Figure 1 represents the distribution discrepancy between a pseudorandom number generation and a quasi-random low-discrepancy Sobol sequence generation.

Read More

Enhanced Design Capabilities Using CFD

The use of computational fluid dynamics (CFD) in turbomachinery design is getting more and more popular given the increased computational resources. For the design process, however, there is no need for extensive CFD capabilities as the effort is put on minimizing engineering time while obtaining a design which is about 90% optimized. Here we are presenting two cases where CFD is used to derive significant information for pump design.

First, the influence of the blade shape on the parameters of the single blade hydrodynamic pump was studied by Knížat et al [1]. The investigation of the pump properties was carried out experimentally with a support of CFD methods. The accuracy of applied steady-state calculations was satisfactory for the process of design of a single blade pump, because of the good agreement between measured and calculated power curves.

Read More

Can 1D Tools be Used to Design an HVAC System?

The heating, ventilation, and air-conditioning (HVAC) system is arguably the most complex system that is installed in a house and it is responsible for a substantial amount of the total house energy used. A right-sized HVAC system will provide the desired comfort and will run efficiently. Right-sizing of a HVAC system is the selection of equipment and the designing of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Rightsizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space, however, a full HVAC design involves more than just the load estimate calculation as this is only the first step of the iterative HVAC design procedure. Heating and cooling loads are dependent on the building location, sighting, and the construction of the house, whereas the equipment selection and the air distribution design are dependent upon the loads and each other.

Read More

Introduction to your Supercritical CO2 Power Cycle

Supercritical carbon dioxide cycles have slowly become more popular in the engineering market for electricity generation from various sources. SCO2 is found to be an ideal working fluid for generating power cycles due to its high efficiency –more than supercritical or superheated steam, which results in lower cost of electricity.

Supercritical carbon dioxide is a fluid state where carbon dioxide is operated above its critical point which causes the compound to behave as both a gas and a liquid simultaneously with the unique ability to flow as a gas though at the same time dissolve materials like a liquid. SCO2 changes density over small difference in temperature or pressure, though stay in the same phase; allowing large amount of energy to be extracted at higher temperatures.

Read More

Design Challenges of Boiler Feed Pump Turbines in Thermal Power Stations

 The design of a boiler feed pump turbine features some unique characteristics that presents certain challenges in terms of efficiency management, varying operating ranges, and many other features.  In order better understand the accepted designs of Boiler Feed Pump Turbines (BFPTs), it is important to know how the operation of steam turbines used to drive boiler feed pumps can fundamentally improve fossil and nuclear plants.  Much like the design of mechanical drive turbines, feed pump turbines also feature the same thermodynamic objectives as the main turbine and all of the engineering difficulties with optimal blade design, rotor and bearing harmonic conditions, ideal flow path definitions, and so on.  However, some distinctions can make a BFPT design particularly distinct from a regular mechanical drive turbine.  Figure 1 shows a basic heat balance diagram for a plant using a boiler feed pump turbine arrangement.

boiler-post
Figure 1 – Simple Process Diagram for Plant with Boiler Feed Pump Turbine in AxCYCLE®

Inherent in its name, the BFPT must be fully compatible with the boiler feed pump. In other words, the necessary power and speed of the BFPT are determined by the requirements of the pump. In a fully integrated and dynamic system such as this, a large portion of the design requires developing a proper heat balance that will optimize the plant performance. In general, the boiler feed pump turbine uses both steam from the boiler and the main turbine to drive the mechanical shaft connected to the boiler feed pump. This arrangement has proven highly successful in efficiently applying the steam’s thermal energy throughout the plant. In certain arrangements, the BFPT can instead accept steam from cold reheat lines, main unit crossover piping lines, and different extractions from the main turbine. Regardless of the source, one distinction specifically unique to the BFPT is that it must accept steam from two separate sources.

Read More

Importance and Modelling of Internal Combustion Engine Cooling Systems

In an internal combustion engine, combustion of air and fuel takes place inside the engine cylinder and hot gases are generated with temperature of gases around 2300-2500°C which may result in not only burning of oil film between the moving parts, but also in seizing or welding of the stationery and moving components. This temperature must be reduced such that the engine works at top efficienc,  promoting high volumetric efficiency and ensuring better combustion without compromising the thermal efficiency due to overcooling. Most importantly, the engine needs to function both in the sense of mechanical operation and reliability. In short, cooling is a matter of equalization of internal temperature to prevent local overheating as well as to remove sufficient heat energy to maintain a practical overall working temperature.

It is also important to note that about 20-25% of the total heat generated is used for producing brake power (useful work). The cooling system should be designed to remove 30-35% of total heat and the remaining heat is lost in friction and carried away by exhaust gases.

Read More

Explaining Geothermal Cycles

blog-post-4

Geothermal energy has become more and more popular globally due to its sustainability and economic stand point. Geothermal power plants run on a variety of temperatures and utilize hydrothermal resources (water/steam and heat) from below the earth surface to generate electricity for people’s daily consumption. Resources can come from dry steam or hot water wells.

There are three kinds of Geothermal cycle for power plants: binary cycle, dry steam and flash steam. Binary cycle power plants use the heat transfer from geothermal hot water to secondary fluids with a low boiling point at the lower end of standard geothermal temperature (225 to 360 F). This heat will cause the secondary fluid to bubble and turn into steam in the heat exchanger, which is then used to turn the turbine. Since water and secondary fluids are kept apart in the cycle, air emission is minimized.

Read More

Driving Turboexpander Technology

Turboexpanders are used in a number of applications, including floating LNG (liquefied natural gas), LPG (liquefied petroleum gas) / NGL (natural gas liquids), dew point control, and ethylene plants.  Used as a highly efficient system that takes advantage of high pressure, high-temperature flows, the turboexpander both produces cryogenic temperatures and simultaneously converts thermal energy into shaft power.  Essentially, a turboexpander is comprised of a radial inflow expansion turbine and a centrifugal compressor combined as a single unit on a rigid shaft. The process fluid from a plant stream will run through the expansion turbine to both provide low-temperature refrigeration and convert thermal energy to mechanical power as a byproduct.  First, the gas will radially enter the variable inlet nozzles (or guide vanes) of the turbine, which will allow for a localized increase in fluid velocity prior to entering the turbine wheel.  The turbine wheel will accept this high-temperature, high-pressure, accelerated gas and convert it into mechanical energy via shaft rotation. The primary product of a turboexpander manifests at the outflow of this turbine.  After the process gas passes through the turbine wheel, this gas has expanded so dramatically that it produces cryogenic temperatures colder than any other equipment in the plant.

turboexpander
Figure 1- Typical Turboexpander – Expander-Compressor Configuration

The useful mechanical energy converted from this system is generally used to drive a centrifugal compressor positioned on the opposite end of the shaft.  In the case of this expander-compressor setup, the mentioned turboexpander technology avoids the excessive use of fuel consumption seen in other systems, and significantly decreases the CO2 footprint of the overall design.  As well, there are various examples of turboexpanders that use an expander-generator setup, which converts the mechanical energy from the turbine into direct electrical power.  Turboexpanders have come a long way in the last 40 years.  With the advent of magnetic bearings and more advanced sealing systems, turboexpanders have been able to handle shaft speeds in large and small machines of up to 10,000 rpm and 120,000 rpm, respectively.  Moreover, innovations in specific CFD modules for turbomachinery have allowed turboexpander systems to achieve efficiencies upwards of 90%.

Read More

Understanding the Characteristics of Varying Centrifugal Blower Designs

Many people speculate about the confusion on what is considered a compressor, a blower, or simply a fan.  In essence, each of these turbo-machines achieve a pressure rise by adding velocity to a continuous flow of fluid.  The distinctions between fans, blowers, and compressors are quite simply defined by one parameter, the specific pressure ratio.  Each machine type, however, utilizes a number of different design techniques specific to lower and higher-pressure applications.  As per the American Society of Mechanical Engineers (ASME), the specific pressure is defined as the ratio of the discharge pressure over the suction pressure (or inlet pressure).  The table shown below defines the range at which fans, blowers, and compressors are categorized.
table

Similarities between the design of fans and blowers occur near the lower end of a blower’s range.  As well, many design parallels exist between high-pressure blowers and compressors.  For the article, we will be investigating the different design characteristics of centrifugal blowers. Blower selection depends on a number of factors including operating range, efficiency, space limitations, and material handled.   Figure 1 shows a number of different impeller blade designs that are available for centrifugal blowers.

Read More

Gaining Turbomachinery Insight Using a Fluid Structure Interaction Approach

Existing research studies for the corresponding flow-induced vibration analysis of centrifugal pumps are mainly carried out without considering the interaction between fluid and structure. The ignorance of fluid structure interaction (FSI) means that the energy transfer between fluid and structure is neglected. To some extent, the accuracy and reliability of unsteady flow and rotor deflection analysis should be affected by this interaction mechanism.

In recent years, more and more applications of FSI are found in the reliability research of turbomachinery. Most of them are about turbines, and a few of them address pumps. Kato [1] predicted the noise from a multi-stage centrifugal pump using one-way coupling method. This practical approach treats the fluid physics and the solid physics consecutively.

Read More

Page 5 of 1012345678910