Pump Characteristic Curves

对不起,此内容只适用于美式英文。 For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

Introduction

A pump is a hardware, which feeds energy to a fluid (e.g. Water) to flow through channels. Pumps are used, for example, to direct water out of the ground, to transport drinking or sewerage water over large distances in combined pipe networks or to discard water from polders. In any practical application, the pump needs to work with its best performance. It is also important to check that the flow rate and head of the pump are within the required specifications, which are normally presented as the Pump Characteristic curves. These plots play an important role in understanding the region in which the pump needs to be operated thus ensuring the life of the pump.

Pump Characteristic Curves

The performance of any type of pump can be shown graphically, which can be based on either the tests conducted by the manufacturer or the simulations done by the designer. These plots are presented as Pump Characteristic Curves. The hydraulic properties of any pump (e.g. Centrifugal Pump) can be described by the following characteristics.

  1. Q-H Curve
  2. Efficiency Curve
  3. Net Positive Suction Head (NPSH) Curve

 

Pump characteristic curves generated from AxSTREAM
Figure 1 Pump characteristic curves generated from AxSTREAM

Q-H Curve

The Q-H curve gives the relation between the volume flow rate and the pressure head, i.e. the lower the pump head, the higher the flow rate. Q-H curves are provided by the manufacturer of the pump and can normally be considered as simple quadratic curves.
Read More

Can a sales team select the right turbomachinery for a client without bothering the engineering team?

对不起,此内容只适用于美式英文。 For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

This might seem like a strange question, but we get ask this a lot. The question takes the form of: Can the sales side do a proper preliminary design and select the optimal machine (turbine/compressor/pump)?  Is it possible for the design and application task to be integrated in a way allowing the application team the autonomy to make decisions without going back to the engineering team every time they get an inquiry? After realizing how large of a pain point this is for our clients, we decided to solve this problem for a major turbine manufacturer in Asia and in the process, provided a time-saving solution to maximize the returns for all the stakeholders.

The challenge came with the different competencies of the sales and design team. The sales/application teams are not necessarily experts in design while designers cannot double as application engineers to meet the sales requirements.

In our efforts to solve this issue, we worked with this turbine manufacturer. We listed all of their current processes, limitation, requirements, constraints, and etc. to explore the many possible ways to resolve this pain point. In the end, there were two solutions; (1) Develop custom selection software, or (2) Leverage the AxSTREAM® platform using AxSTREAM ION™.

    1. Developing Custom Selection Software: Developing a custom selection software specific to the manufacturer where their application team can choose the optimal turbine based on expected customer needs. Developing such a custom system requires bringing together the expertise of different teams from turbomachinery (such as aero-thermal and structural) to software developer, testing, etc. Developing such a one-off system also takes considerable time at considerable cost. This approach could solve the current problem, but with rapidly changing technologies and market requirements, this is not a viable long-term solution.
    2. Leverage the AxSTREAM® Platform using AxSTREAM ION™: We evaluated the limitation and possibilities of utilizing our turbomachinery design platform AxSTREAM® to meet the requirement of sales/application engineering team for today’s needs and in the future. We found the organization had a greater advantage using this existing platform rather than investing in the short-term solution of developing a custom selection software. Many of the building blocks required for customization are already available to use via an interface a non-technical sales person could easily use. This platform was utilized for meeting the requirement of this turbine manufacturer saving time and cost while resolving a large pain-point for the organization.

Read More

Evaluating the Scalability of Different Combined Cycles with Bottoming sCO2 Turbines

对不起,此内容只适用于美式英文。 For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

Bottoming cycles are generating a real interest in a world where resources are becoming scarcer and the environmental footprint of power plants is becoming more controlled. With this in mind, reduction of flue gas temperature, power generation boost, and even production of heat for cogeneration application is very attractive and it becomes necessary to quantify how much can really be extracted from a simple cycle to be converted to a combined configuration.

Sco2 Power Unit

Supercritical CO2 is becoming an ideal working fluid primarily due to two factors. First, turbomachines are being designed to be significantly more compact. Second, the fluid operates at a high thermal efficiency in the cycles. These two factors create an increased interest in its various applications. Evaluating the option of combined gas and supercritical CO2 cycles for different gas turbine sizes, gas turbine exhaust gas temperatures and configurations of bottoming cycle type becomes an essential step toward creating guidelines for the question, “how much more can I get with what I have?”
Read More

Design of Transonic Axial Compressors

Nowadays, transonic axial flow compressors are very common for aircraft engines in order to obtain maximum pressure ratios per single-stage, which will lead to engine weight and size reduction and therefore less operational costs. Although the performance of these compressors is already high, a further increment in efficiency can result in huge savings in fuel costs and determine a key factor for product success. Therefore, the manufacturers put a lot of effort towards this aspect, while trying to broaden the operating range of the compressors at the same time.

Axial Compressor Designed in AxSTREAM

The creation of shocks, strong secondary flows and other phenomena increases the complexity of the flow field inside a transonic compressor and challenges the designers who need to face many negative flow characteristics such as, high energy losses, efficiency decrease, flow blockage, separation and many more. As the compressor operates from peak to near-stall, the blade loading increases and flow structures become stronger and unsteady. Despite the presence of such flow unsteadiness, the compressor can still operate in a stable mode. Rotating stall arises when the loading is further increased, i.e. at a condition of lower mass flow rate. There are several possible techniques to limit the negative effect of the flow features mentioned above. Here we will present only two. The first one is related to the blade shape generation, while the second one is linked to flow control techniques.

阅读更多

Direct Off-Design Performance Prediction of Industrial Gas Turbine Engine

对不起,此内容只适用于美式英文。 For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

The modern gas turbine engine has been used in the power generation industry for almost half a century. Traditionally, gas turbines are designed to operate with the best efficiency during normal operating conditions and at specific operating points. However, the real world is non-optimal and the engine may have to operate at off-design conditions due to load requirements, different ambient temperatures, fuel types, relative humidity and driven equipment speed. Also more and more base-load gas turbines have to work at partial load, which can affect the hot gas path condition and life expectancy.

At these off-design conditions, the gas turbine efficiency and life deterioration rate can significantly deviate from the design specifications. During a gas turbine’s life, power generation providers may need to perform several overhauls or upgrades for their engines. Thus, the off-design performance after the overhaul can also change. Prediction of gas turbine off-design performance is essential to economic operation of power generation equipment. In the following post, such a system for complex design and off-design performance prediction (AxSTREAM®) is presented. It enables users to predict the gas turbine engine design and off-design performance almost automatically. Each component’s performance such as the turbine, compressor, combustor and secondary flow (cooling) system is directly and simultaneously calculated for every off-design performance request, making it possible to build an off-design performance map including the cooling system. The presented approach provides a wide range of capabilities for optimization of operation modes of industrial gas turbine engines and other complex turbomachinery systems for specific operation conditions (environment, grid demands more).

Read More

Micro-turbines for Extending Electric Car Range

对不起,此内容只适用于美式英文。 For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

The concept of using gas turbines to power a car is not new. In fact, for many decades now, various car manufacturers have experimented with the idea of using either axial or radial gas turbines as the main propulsion of concept vehicles. In the 50’s and 60’s it was Fiat and Chrysler who introduced such concept cars. In those cases, the gas turbine was directly powering the wheels for propulsion. Toyota followed the same concept in the 80’s (Figure 1) [2]. Their concept car utilized a radial turbine in order to propel the vehicle using an advanced electronically controlled transmission system.

Figure 1
Figure 1: Toyota GTV engine [3].
The main advantage of a gas turbine compared with conventional reciprocating (or even rotary) car engines is the fact that it has a much higher power-to-weight ratio. This means that for the same engine weight, a gas turbine is able to deliver much higher power output. This is why aviation was one of the biggest adopters of this technology.

Read More

Different Criteria Options in Turbomachinery Design

对不起,此内容只适用于美式英文。 For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

When people design turbomachines, whether it be a turbine, compressor, blower or fan, they need to find the optimal design based on their criterion under certain constraints.

With AxSTREAM®, people are given several options for their design criteria, which provides flexibility. With that being said, we often get asked what their differences are and here is a brief explanation addressing just that.

The design criteria menu includes power, internal total-to-static efficiency, internal total-to-total efficiency, polytropic efficiency, diagram total-to-static efficiency, and diagram total-to-total efficiency as shown in Figure 1

Figure 1 - Design Criteria Options in AxSTREAM Preliminary Design
Figure 1 – Design Criteria Options in AxSTREAM® Preliminary Design

Power and efficiency are related, but not always the same thing, especially when the boundary conditions are not fixed as design parameters. In AxSTREAM’s Preliminary Design Module, the user can set boundary conditions such as pressure at inlet and outlet, inlet total temperature, etc., as a range instead of a specific value. Along with other parameters, the solver generates hundreds or even thousands of solutions within the range.

Read More

A Small Review with a Big Context

对不起,此内容只适用于美式英文。 For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

This being my last post for 2017, I wanted to do a short review of what we have been discussing this year. During the beginning of the year, I decided to focus on the 3D analyses and capabilities that were implemented in our AxCFD and AxSTRESS modules for fluid and structural dynamics. With that in mind, my posts were tailored towards such, highlighting the importance of the right turbulence modelling for correct flow prediction. Among other topics, we studied the key factors that lead to resonance, the importance of not neglecting the energy transfer between fluid and structure, and the great advantage that increasing computing capacity offers to engineers in order to understand turbomachinery in depth. However, no matter how great the benefits are, the approximations and errors from CFD can still lead to high uncertainty. Together, we identified the most important factors, from boundary conditions all the way to mesh generation and simulation of cooling flows, and we put an emphasis on the necessary development of uncertainty quantification models. This 3D module related topic finished with an extensive article on fatigue in turbomachinery which plays a crucial role in the failure of the machine, and was the cause for many accidents in the past.

AxCFD
SoftInWay’s AxCFD Module

The second part of my posts focused on different industries that rely on turbomachinery as we tried to identify the challenges that they face. Being fascinated by the space industry along with the increasing interest of the global market for launching more rockets for different purposes, I started this chapter with the description of a liquid rocket propulsion system and how this can be designed or optimized using the AxSTREAM platform. Moving a step closer to earth, next I focused on the aerospace industry and the necessity for robust aircraft engines that are optimized, highly efficient, and absolutely safe. One of the articles that I enjoyed the most referred to helicopters and the constant threats that could affect the engine performance, the overall operation and the safety of the passengers. Dust, salt and ice are only a few of the elements that could affect the operation of the rotating components of the helicopter engine, which allows us understand how delicate this sophisticated and versatile aircraft is.
Read More

Gas Turbine Cooling – Enhance Current Advances with SoftInWay[

对不起,此内容只适用于美式英文。 For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

The development of turbine cooling is a process that requires continuous improvements and upgrades. A gas turbine engine is a thermal device and so it is composed of a range of major and minor cooling and heating systems. Turbine cooling is just a small part of the total engine system cooling challenges (combustor system cooling, heat exchangers, casings, bores, compressor and turbine disks, bearings and gears etc.). However, effective turbine cooling consists of the greatest economic factor when it comes to engine development and repair costs, representing up to 30% of the total cost.

As a thermodynamic Brayton cycle, the performance of the gas turbine engine is influenced by the turbine inlet temperature, and the raise of this temperature can lead to better performance and more efficient machines. Current advancements in the development of cooling systems allows most modern gas turbines to operate in temperatures much higher than the material melting point. Of course nothing would have been possible without the parallel development of advanced materials for structural components as well as advances in computing resources and consequently in aerodynamic design, prognostic and health monitoring systems and lifing processes. In particular, as far as the lifing of the machine is concerned, the high pressure (HP) turbine containing the most advanced high temperature alloys and associated processing methods, as well as the combustor which represents the key components that have limited life and tend to strictly dictate the cycles of operation and the allowable time on the wing.

Turbine Cooling Scheme Designed in AxSTREAM NET
Figure 1. Turbine Cooling Scheme Designed in AxSTREAM NET

Read More

Heat Balance Analysis of Thermal Energy Storage

对不起,此内容只适用于美式英文。 For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

A primary challenge of meeting the increased demand in energy is that energy supply and accessibility isn’t consistent throughout different geographical areas. Availability of energy sources is considered extremely critical in clean/renewable energy applications such as wind and solar where energy source is quite scarce and unreliable. Thermal energy storage in particular is often being looked into with the universal rise of energy demand from every part of the world. With the help of energy storage technology, it allows any excess of thermal energy to be stored and used at a later time/date where it’s needed.

Energy Storage
Source: http://www.climatetechwiki.org/sites/climatetechwiki.org/files/images/extra/storage.jpg

Thermal energy storage can be achieved with widely diverse technologies, including molten salt application. By heating the salt and storing it in insulated containers, users can pump out the salt to release the heat stored when the energy is needed. For example, with solar application the molten salt stores the excess heat that is produced during the day and releases it at night to produce electricity.
Read More

第 1 页,共 9 页123456789