Designing Supercritical CO2 Power Plants

The supercritical CO2 power cycle is one of the most promising power technologies. It is not by chance though, because carbon dioxide (CO2) has a unique combination of attributes, such as a low critical temperature, an environmentally natural origin, a high standard of safety and a low cost. Carbon dioxide is also thoroughly studied, therefore there is sufficient information surrounding it. But on the other hand, the supercritical CO2 cycle has a high energy conversion factor, such as high thermal efficiency.
(更多…)

Which gas turbine is the best for my combined cycle power plant conversion?

combinedcyclesThe goal of this test case is to find the gas turbine necessary to produce 58 MW of total net power for the conversion of a steam turbine to a combined gas-steam cycle while providing the highest level of cycle thermal efficiency.

The exhaust gases from the gas turbine are used to heat up steam through three HRSGs (Heat Recovery Steam Generators) in series. The steam is then used in the studied steam turbine which is comprised of two “cylinders” in series.
(更多…)

SoftInWay April Events and Why You Should Attend

supercriticalco2inaxcycleMarch just really flew by!

We’re kicking off April with our new Heat Balance Calculation with AxCYCLE online classes this month. Here’s three good reasons you should attend:

1. You’ll get to learn, understand and dive into our new conceptual cycle analysis tool that has built-in customizable OEM turbine and ICE libraries (perfect for engineers involved in waste heat recovery) (更多…)

Radial versus Diagonal Diffusion in Multi-Stage Pumps

radialanddiagonaldiffusion
Radial and Diagonal Diffusion

Although crossover design has only a secondary effect on pump efficiency, it too should use every available trick to achieve the best possible results.

This picture (left and below) shows short and long configurations of the two basic types of crossovers normally used on multi-stage pumps. Both have been tested by the West Coast pump companies and the results of these tests indicate that the radial diffusion type is approximately one point more efficient than the diagonal diffusion type. Here’s why: (更多…)

Let’s Talk About Centrifugal Compressors

centrifugalcompressordesign
Centrifugal Compressor Design

We all know by now that no machine is perfect. Turbines have carryover losses, pumps experience cavitation phenomena, and compressors certainly have their fair share of pros and cons. We’re on the hunt for some common design problems – perhaps problems that you have experienced yourself, with centrifugal compressors. We scoured through our technical papers and presentations and searched the web for some. Here’s a list of frequent concerns and questions we ran into: (更多…)

New Waste Heat Recovery Features in AxCYCLE Available Now

AxCYCLE IC engine
AxCYCLE IC engine

Have you checked out AxCYCLE recently?

SoftInWay officially announced the latest features with the release of version 2.3.

With this update, the system’s new tools are available to all users, but waste heat recovery application engineers, particularly in the automotive industry, should take notice. (更多…)

Goodbye February, Hello March!

keepcalmandenjoytheweekendHello all you hardworking professionals!

We at SoftInWay want to wish everyone a happy, healthy weekend as we draw February to a close – we have all earned this weekend, we’ve worked hard all week. Right?

But the excitement doesn’t stop there. Come Monday morning, we have a new, clean slate to fill with ideas, projects, services and awesome opportunities for you! (更多…)

5 Steps to Advanced 3D Blade Design

3dbladedesign
3 Blade Design

To decrease losses and increase performance of a turbine, we need to develop special (compound) geometries. Here’s your turbomachinery cheat sheet to advanced 3D blade design!

1. Optimizing plane profiling

There are several positive things that can give proper plane sections profiling: decreasing the profile losses, decreasing secondary losses and satisfying structural limitations. (更多…)