Study of a Supercritical CO2 Power Cycle Application in a Cogeneration Power Plant

This is an excerpt from a technical paper, presented at the ASME Power & Energy Conference in Pittsburg, Pennsylvania USA and  written by Oleksii Rudenko, Leonid Moroz, and  Maksym Burlaka.  Follow the link at the end of the post to read the full study! 

Introduction

Supercritical CO2 operating in a closed-loop recompression Brayton cycle has the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at similar temperatures [2]. The current applications of the supercritical CO2 Brayton cycle are intended for the electricity production only and the questions which are related to the building of CHP plants based on Supercritical CO2 technology were not considered yet.

CHP is the concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. CHP is a type of distributed generation, which, unlike central station generation, is located at located at or near the point of consumption. Instead of purchasing electricity from a local utility and then burning fuel in a furnace or boiler to produce thermal energy, consumers use CHP to improve efficiency and reduce greenhouse gas (GHG) emissions. For optimal efficiency, CHP systems typically are designed and sized to meet the users’ thermal base load demand. CHP is not a single technology but a suite of technologies that can use a variety of fuels to generate electricity or power at the point of use, allowing the heat that would normally be lost in the power generation process to be recovered to provide needed heating and/or cooling. This allows for much greater improvement in overall fuel efficiency, therefore resulting in lower costs and CO2 emissions. CHP’s potential for energy saving is vast.

It should be noted that CHP may not be widely recognized outside industrial, commercial, institutional, and utility circles, but it has quietly been providing highly efficient electricity and process heat to some of the most vital industries, largest employers, urban centers, and campuses. While the traditional method of separately producing useful heat and power has a typical combined efficiency of 45 %, CHP systems can operate at efficiency levels as high as 80 % (Figure 1) [1].

Figure 1 - CHP Process Flow Diagram
Figure 1. CHP Process Flow Diagram.

Taking into consideration the high efficiency of fuel energy utilization of CHP plants and the high potential of the supercritical CO2 technology, the latter should be also considered as the base of future CHP plants. The comparison with traditional Steam based CHP plants also should be performed.

The study of CHP plant concepts were performed with the use of the heat balance calculation tool AxCYCLE™ [3].

Read More

Design of Waste Heat Recovery Systems Based on Supercritical ORC for Powerful Gas and Diesel Engines

This is an excerpt from a technical paper, presented at the ASME ORC 2015 Conference in Brussels, Belgium and  written by Oleksii Rudenko, Leonid Moroz, Maksym Burlaka, and Clement Joly.  Follow the link at the end of the post to read the full study! 

1. Introduction

Internal combustion piston engines are among the largest consumers of liquid and gaseous fossil fuels all over the world. Despite the introduction of new technologies and constant improving of engines performances they still are relatively wasteful. Indeed, the efficiency of modern engines rarely exceeds 40-45% (Seher et al. (2012), Guopeng et al. (2013)) and the remainder of the fuel energy usually dissipates into the environment in the form of waste heat. The heat balance diagram of typical engine is given in Figure 1. As is evident from Figure 1, besides the mechanical work energy the heat balance includes a heat of exhaust gas, a heat of charge air, a Jacket Water (JW) heat, a heat of lubricating oil and a radiation heat. The energy from all the heat sources except the last one (radiation), due to its ultra-low waste heat recovery potential, can be used as heat sources for WHRS (Paanu et al. (2012)) and are considered here.

Heat Balance Diagram
Figure 1: Typical heat balance diagram for CAT engine (Caterpillar (2011))

Waste heat utilization is a very current task because it allows to reduce the harmful influence of ICPE operation on the environment as well as to obtain additional energy and to reduce the load on the engine’s cooling system. Different WHRS can produce heat energy, mechanical energy or electricity and combinations of the converted energy forms exist as well. In general, the type of WHRS to be used is determined by the engine type, fuel cost, available energy customers and other factors. In the presented paper, only WHRS for mechanical power and electricity production were considered because these kinds of energy are preferable for this type of applications and they can be easily converted into other forms of energy.

For vehicle engines the WHRS based on Organic Rankine Cycle (ORC) are the most commercially developed (Paanu et al. (2012)). Because of strict restrictions on weight and dimensions, the
mentioned systems typically operate on the base of a simple or recuperated ORC and utilize only high temperature waste heat from the exhaust gases and the exhaust gas recirculation. They usually produce mechanical power or electricity. More complex cycles and a larger number of heat sources are used for waste heat recovery from powerful internal combustion engines where additional weight and dimensions are not crucial factors. Waste heat from stationary, marine and another more powerful ICPE can be recovered using a typical steam bottoming cycle. Steam WHRS allow utilizing almost all a high temperature waste heat and partially utilizing a low temperature heat. The high efficiency steam WHRS are presented in (MAN Diesel & Turbo (2012), Petrov (2006)), they provide up to 14.5% of power boost for the engine.

Addition of the internal heat recuperation to a WHR cycle:

  1. Appropriate working fluid selection;
  2. Increment of initial parameters of bottoming cycle up to supercritical values;
  3. Maximize waste heat utilization due to the usage of low temperature heat sources;
  4. Bottoming cycle complexification or usage of several bottoming cycles with different fluids
    (Maogang (2011)).



This paper focuses on the development of new WHRS as an alternative to high efficiency steam bottoming cycles by accounting for the latest progress in the field of waste heat recovery. The
application range of the proposed system extends to powerful and super powerful ICPEs.

The goal of the presented work is the development of a new, high efficiency WHRS for powerful and super powerful ICPEs based on ORC principles. To solve the assigned task, a thorough study of the currently existing works was performed and the best ideas were combined. The principles of the maximum waste heat utilization, maximum possible initial cycle parameters, recuperation usage and single working fluid were assumed as a basis for the new WHRS design.

Read the full paper here