Leakage Reduction for Efficient Machines

I just received a question from a consulting company asking for our help: “What is the effect of the gap between the rotor blades and the casing on the performance of the machine?” To answer this question you need to have the right tools and the right experience. At SoftInWay we have both and this is why our customer are satisfied by the speed and quality of our services.

To go back to the question, blade tip losses represent a major efficiency penalty in a turbine rotor. These losses are presently controlled by maintaining close tolerances on tip clearances. Tip leakage resulting by gaps between the blade tip and the casing can account for about 1/3 of the total losses in a turbine stage. The reason is mainly the offloading of the tip since the leaking fluid is not exerting a force on the blade, as well as the generation of complicated flow further downstream due to the leakage vortex.

Read More

Blade Shape Optimization

DOE in AxSTREAM
An Example of Design of Experiment Study Methods in AxSTREAM

One of the most challenging tasks during turbomachinery design is the definition of aerodynamic shape of the blades, taking into account the complicated flow phenomena and the effect that the shape will have to other disciplines of the design. The rapid increase of computational resources along with the development of CFD has led to a big interference of optimization methods and numerical simulations as part of the design process. There are two main categories in which optimization methods fall: the stochastic models and the gradient-based models. The first family of models focuses on finding the optimum design, while the second uses the gradient information to lead the optimization. Apart from the optimization algorithms, there are several techniques that help designers understand the dependence of design parameters towards others and extract meaningful information for the design. First, the design of experiment approach (DoE) consists of the design of any task that aims to describe or explain the variation of information for conditions that are hypothesized to reflect the variation. Next, we have the surrogate models that are used instead of the optimization algorithms to generate a model that is as accurate as possible while using as few simulation evaluations as possible with low computational cost. The most common surrogate models used for turbomachinery design are the Response Surface Method, the Kriging Model and the Artificial Neural Networks. Last, data mining approaches have recently become very popular as they allow engineers to look for patterns in large data sets to extract information and transform it into an understandable structure for further use.

As far as the aerodynamic design optimization methods is concerned, they can be grouped into inverse and direct designs. Inverse methods rely on definition of pressure distribution and they iterate along blade shape, changing to develop a final profile shape. The computational cost is low and such methods can be combined with an optimization method in an efficient design process. However, the biggest disadvantages lies on the fact that this approach is strongly dependent on the experience of the designer. Young engineers may fail to define a pressure distribution that performs well in design and off-design conditions. In addition, with the inverse method approach the user cannot account for geometric and mechanical constraints.

Read More

An Insight into Organic Rankine Cycle Design

Nowadays, organic Rankine cycles (ORCs) are a widely studied technology. Currently, several research and academic institutions are focused on the design, optimization, and dynamic simulation of this kind of system. Regarding the numerical analysis of an ORC, several steps are required to select the optimal working fluid and the best cycle configuration, taking into account not only nominal performance indexes, but also economic aspects, off-design efficiency, the dynamic behaviour of the plant, and the plant volume or weight.

To begin, a detailed description of the heat source and heat sink, evaluation of all the technical constraints (component selection or plant layout), and both environmental and safety issues is needed. The most significant stage of the design is definitely the correct choice with both working fluid and cycle configuration. Making the wrong choice at this stage will result in poor cycle performance. A huge number of possible working fluids can be selected for ORC systems, which is one of the major advantages of these systems since they can be suitable for almost every heat source but, on the other hand, it makes the resolution of the optimization problem inevitably more complicated. Read More

Helicopter Engines – Understanding the Constant Threats and Analyzing their Effects with AxSTREAM

Helicopter landing on a desert
Figure 1: Helicopter landing on a desert – burnout threat

The helicopter is a sophisticated, versatile and reliable aircraft of extraordinary capabilities. Its contribution to civil and military operations due to its high versatility is significant and is the reason for further research on the enhancement of its performance. The complexity of helicopter operations does not allow  priority to be given for any of its components. However, the main engine is key for a successful flight. In case of engine failure, the helicopter can still land safely if it enters autorotation, but this is dictated by particular flight conditions. This article will focus on the possible threats that can cause engine failure or deteriorate its performance.

When a helicopter is operating at a desert or above coasts, the dust and the sand can challenge the performance of the engine by causing erosion of the rotating components, especially the compressor blades. Moreover, the cooling passages of the turbine blade can be blocked and the dust can be accumulated in the inner shaft causing imbalance and unwanted vibration. The most common threat of this kind is the brownout which is caused by the helicopter rotorwash as it kicks up a cloud of dust during landing.

Read More

Design Process with AxSTREAM

Step 1: Basic inputs

– Input a set of boundary conditions, geometrical parameters and constraints that are known to the user.

Step 2: Design space generation

– Thousands of machine flow path designs can be generated from scratch
–  Explore a set of design solution points using the Design Space Explorer
–  Adjusting geometric parameters while retaining the desired boundary conditions is also possible

Preliminary Design
Figure 1: Design space
Post design geo modification B
Figure 2:  Post design geometry modification

Read More

Steam and Gas for Power Generation

Nowadays, gas and steam turbines are contributing to more than 80% of the electricity generated worldwide. If we add the contribution from hydro turbines too, then we reach 98% of total production.

The improvement of the flow path is crucial, and an advanced design can be achieved through several strategies. The aerodynamic optimization of gas and steam turbines can lead to enhanced efficiency. In addition to that, the minimization of secondary losses is possible by introducing advanced endwall shaping and clearance control. Moreover, further increase of efficiency can be achieved by decreasing the losses of kinetic energy at the outlet from the last stage of the turbine. This can be done using longer last-stage blades as well as improving the diffuser recovery and stability.

Read More

Micro Gas Turbines – Addressing the Challenges with AxSTREAM

During the last decade the development and extensive use of unmanned air vehicles (UAV) has accelerated the need for high performing micro gas turbines. In fact, their large energy density (Whr/kg) makes them attractive not only for UAV application, but also for portable power units, as well as for distributed power generation in applications where heat and power generation can be combined.
Micro gas turbines have the same basic operation principle as open cycle gas turbines (Brayton open cycle). In this cycle, the air is compressed by the compressor, going through the combustion chamber, where it receives energy from the fuel and thus raises in temperature. Leaving the combustion chamber, the high temperature working fluid is directed to the turbine, where it is expanded by supplying power to the compressor and for the electric generator or other equipment available [1].

Read More

Gas for Power

Gas turbines are one of the most widely-used power generating technologies, getting their name by the production of hot gas during fuel combustion, rather than the fuel itself. Today, the industry is clearly driven by the need of fast and demand-oriented power generation, thus additional effort is put in extremely short installation times, low investment costs and an enormously growing volatility in the electrical distribution in order to achieve higher levels of reliability in the power grid [2].

The majority of land based gas turbines can be assigned in two groups [3]: (1) heavy frame engines and (2) aeroderivative engines. The first ones are characterized by lower pressure ratios that do not exceed 20 and tend to be physically large. By pressure ratio, we define the ratio of the compressor discharge pressure and the inlet air pressure. On the other hand, aeroderivative engines are derived from jet engines, as the name implies, and operate at very high compression ratios that usually exceed 30. In comparison to heavy frame engines, aeroderivative engines tend to be very compact and are useful where smaller power outputs are needed.

Read More

Steam for Power

Turbine technology being central to energy-producing industry, research and development efforts is directed towards cost-savings (increased efficiency, reliability, and component lifespan), sustainability (alternative fuels, lower emissions), and cost-competitiveness (particularly for the emerging technologies) [1]. This blog post is the first in a series of three that will focus on steam, gas and hydraulic turbines for power generation.

Going back to the Archimides era we will find the idea of using the steam as a way to produce work. However, it was not until the industrial revolution when the first reciprocating engines and turbines developed to take advantage of steam power. Since the first impulse turbine development by Carl Gustaf de Laval in 1883 and the first reaction type turbine by Charles Parsons one year later, the development of turbines have sky-rocketed, leading to a power output increase of more 6 orders of magnitude[2].

Read More

Aircraft Engines: A Need for Increased Performance and Safety

Turbine engine of airplaneThe necessity for a robust aircraft engine design is strongly associated with not only flight performance, but also to passengers’ safety. The fatigue on the blade of CFM56 engine did not prove to be fatal in last August’s incident. None of the 99 passengers was hurt, but parts of the engine broke apart damaging the fuselage, wing and tail, and forcing the Boeing Co. 737-700 to an emergency landing. However, that was not the case in July 6, 1996, when the left power plant on a Boeing MD-88 broke apart while accelerating for take-off and the shrapnel was propelled into the fuselage killing a mother and a child seated in the Delta Air Lines Inc. aircraft [1]. A few years earlier, in January 8, 1989, a CFM56-3 blade failure proved to be fatal for 47 out of 118 passengers of the British Midlands Airways (BMA) Ltd Flight 92 departed from London Heathrow Airport en route to Belfast International Airport. Based on Federal Aviation Administration’s accident overview [2] post-accident investigation determined that the fan blade failed due to an aero-elastic vibratory instability caused by a coupled torsional-flexural transient non-synchronous oscillation which occurs under particular operating conditions. An animation describing this process is available at the following link: (Fan Blade Failure).

The last example [3] of this not so cheerful post took place on July 29, 2006, when a plane chartered for skydiving experienced jet engine failure and crashed. Tragically, there were no survivors. The failure was attributed to aftermarket replacement parts. The aircraft was originally equipped with Pratt & Whitney jet engines, specifically made with pack-aluminide coated turbine blades to prevent oxidation of the base metal. However, during the plane’s lifetime, the turbine blades were replaced with different blades that had a different coating and base metal. As a result of the replaced turbine blade not meeting specification, it corroded, cracked and caused engine failure.

Read More

Page 1 of 212