Steam and Gas for Power Generation

Nowadays, gas and steam turbines are contributing to more than 80% of the electricity generated worldwide. If we add the contribution from hydro turbines too, then we reach 98% of total production.

The improvement of the flow path is crucial, and an advanced design can be achieved through several strategies. The aerodynamic optimization of gas and steam turbines can lead to enhanced efficiency. In addition to that, the minimization of secondary losses is possible by introducing advanced endwall shaping and clearance control. Moreover, further increase of efficiency can be achieved by decreasing the losses of kinetic energy at the outlet from the last stage of the turbine. This can be done using longer last-stage blades as well as improving the diffuser recovery and stability.

Read More

Micro Gas Turbines – Addressing the Challenges with AxSTREAM

During the last decade the development and extensive use of unmanned air vehicles (UAV) has accelerated the need for high performing micro gas turbines. In fact, their large energy density (Whr/kg) makes them attractive not only for UAV application, but also for portable power units, as well as for distributed power generation in applications where heat and power generation can be combined.
Micro gas turbines have the same basic operation principle as open cycle gas turbines (Brayton open cycle). In this cycle, the air is compressed by the compressor, going through the combustion chamber, where it receives energy from the fuel and thus raises in temperature. Leaving the combustion chamber, the high temperature working fluid is directed to the turbine, where it is expanded by supplying power to the compressor and for the electric generator or other equipment available [1].

Read More

Gas for Power

Gas turbines are one of the most widely-used power generating technologies, getting their name by the production of hot gas during fuel combustion, rather than the fuel itself. Today, the industry is clearly driven by the need of fast and demand-oriented power generation, thus additional effort is put in extremely short installation times, low investment costs and an enormously growing volatility in the electrical distribution in order to achieve higher levels of reliability in the power grid [2].

The majority of land based gas turbines can be assigned in two groups [3]: (1) heavy frame engines and (2) aeroderivative engines. The first ones are characterized by lower pressure ratios that do not exceed 20 and tend to be physically large. By pressure ratio, we define the ratio of the compressor discharge pressure and the inlet air pressure. On the other hand, aeroderivative engines are derived from jet engines, as the name implies, and operate at very high compression ratios that usually exceed 30. In comparison to heavy frame engines, aeroderivative engines tend to be very compact and are useful where smaller power outputs are needed.

Read More

Steam for Power

Turbine technology being central to energy-producing industry, research and development efforts is directed towards cost-savings (increased efficiency, reliability, and component lifespan), sustainability (alternative fuels, lower emissions), and cost-competitiveness (particularly for the emerging technologies) [1]. This blog post is the first in a series of three that will focus on steam, gas and hydraulic turbines for power generation.

Going back to the Archimides era we will find the idea of using the steam as a way to produce work. However, it was not until the industrial revolution when the first reciprocating engines and turbines developed to take advantage of steam power. Since the first impulse turbine development by Carl Gustaf de Laval in 1883 and the first reaction type turbine by Charles Parsons one year later, the development of turbines have sky-rocketed, leading to a power output increase of more 6 orders of magnitude[2].

Read More

Aircraft Engines: A Need for Increased Performance and Safety

Turbine engine of airplaneThe necessity for a robust aircraft engine design is strongly associated with not only flight performance, but also to passengers’ safety. The fatigue on the blade of CFM56 engine did not prove to be fatal in last August’s incident. None of the 99 passengers was hurt, but parts of the engine broke apart damaging the fuselage, wing and tail, and forcing the Boeing Co. 737-700 to an emergency landing. However, that was not the case in July 6, 1996, when the left power plant on a Boeing MD-88 broke apart while accelerating for take-off and the shrapnel was propelled into the fuselage killing a mother and a child seated in the Delta Air Lines Inc. aircraft [1]. A few years earlier, in January 8, 1989, a CFM56-3 blade failure proved to be fatal for 47 out of 118 passengers of the British Midlands Airways (BMA) Ltd Flight 92 departed from London Heathrow Airport en route to Belfast International Airport. Based on Federal Aviation Administration’s accident overview [2] post-accident investigation determined that the fan blade failed due to an aero-elastic vibratory instability caused by a coupled torsional-flexural transient non-synchronous oscillation which occurs under particular operating conditions. An animation describing this process is available at the following link: (Fan Blade Failure).

The last example [3] of this not so cheerful post took place on July 29, 2006, when a plane chartered for skydiving experienced jet engine failure and crashed. Tragically, there were no survivors. The failure was attributed to aftermarket replacement parts. The aircraft was originally equipped with Pratt & Whitney jet engines, specifically made with pack-aluminide coated turbine blades to prevent oxidation of the base metal. However, during the plane’s lifetime, the turbine blades were replaced with different blades that had a different coating and base metal. As a result of the replaced turbine blade not meeting specification, it corroded, cracked and caused engine failure.

Read More

Liquid Rocket Propulsion with SoftInWay

Preliminary Design of Fuel Turbine

Operation of most liquid-propellant rocket engines, first introduced by Robert Goddard in 1926- is simple. Initially, a fuel and an oxidizer are pumped into a combustion chamber, where they burn to create hot gases of high pressure and high speed. Next, the gases are further accelerated through a nozzle before leaving the engine. Nowadays, liquid propellant propulsion systems still form the back-bone of the majority of space rockets allowing humanity to expand its presence into space. However, one of the big problems in a liquid-propellant rocket engine is cooling the combustion chamber and nozzle, so the cryogenic liquids are first circulated around the super-heated parts to bring the temperature down.

Read More

Computational Fluid Dynamics in Turbomachinery Design

The evolution of turbomachinery technology can be traced back several centuries and has resulted in the high efficiency turbomachines of today. Since the 1940s, turbomachinery development has been led mainly by gas turbine and aeroengine development, and the growth in power within the past 60 years has been dramatic. The development of numerical methods and the increasing computing capacity helped establish a strong design capability in the industry.

The first numerical methods related to turbomachinery were developed years before the use of digital computations. In 1951 Wu [1] introduced the blade-to-blade (S1) and hub-to-tip (S2) stream surfaces, which dominated the field until the 1980s when computer resources made it possible to account for 3D methods. The axisymmetric S2 calculations, also called “throughflow calculation” became the backbone of turbomachinery design, while the S1 calculation remains the basis for defining the detailed blade shape.

Read More

Fatigue in Turbomachinery

This post is based on DeLuca’s publication about fatigue phenomena in gas turbines [1]. One of the most significant characteristics of a gas turbine is its durability. Especially for the aerospace industry where engines must meet not only propulsion but also safety requirements, the failure of gas turbine blades is a major concern. The “cyclic” loading of the components associated with generator excursions is one of the principal sources of degradation in turbomachinery. In addition, fatigue can be caused during the manufacturing of the components. There are three commonly recognized forms of fatigue: high cycle fatigue (HCF), low cycle fatigue (LCF) and thermal mechanical fatigue (TMF).The principal distinction between HCF and LCF is the region of the stress strain curve (Figure 1) where the repetitive application of the load (and resultant deformation or strain) is taking place.

gas-turbine-alloy
Figure 1 – The stress vs. strain curve for a typical gas turbine alloy

HCF is metal fatigue that results from cracking or fracturing generally characterized by the failure of small cracks at stress levels substantially lower than stresses associated with steady loading. HCF occurs as a result from a combination of steady stress, vibratory stress and material imperfections [2].  It is initiated by the formation of a small, often microscopic, crack. HCF is characterized by low amplitude high frequency elastic strains. An example of this would be an aerofoil subjected to repeated bending. One source of this bending occurs as a compressor or turbine blade passes behind a stator vane. When the blade emerges into the gas path it is bent by high velocity gas pressure. Changes in rotor speed change the frequency of blade loading. The excitation will, at some point, match the blade’s resonant frequency which will cause the amplitude of vibration to increase significantly.

Read More

The Significance of Quantifying Uncertainties in Turbomachinery CFD

The increased use of CFD for turbomachinery design is an outcome of the increasing accuracy thanks to high computational resources. Although the benefits of such computations are strong, the approximations and errors derived from CFD could significantly affect the prediction of crucial parameters such as flow temperature and heat transfer. This article will present the challenges related to uncertainties in turbomachinery CFD, based on “Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines” [1]

The exact definition of boundary conditions presents one of the biggest challenges in CFD and turbomachinery given the high accuracy needed to determine the distributions of the non-uniform conditions to which turbomachinery components are subjected [2].

Read More

Multi-Dimensional Coupling CFD Method for Shrouded Turbines

Tip leakage is generated inevitably by the clearance between the rotating blades and the stationary casing of a turbine, and is responsible for both the aerodynamic losses in a turbine stage and the high heat-loads in the tip region [2]. To decrease tip leakage and improve component performance, shroud seal structures have been widely applied to modern turbine components, especially to low pressure turbines, because of their advantage on both aerodynamic and structural features. However, due to the complexity of the shroud geometry, the flow structures and thermodynamic process in shroud can be extremely complicated, that is interactions of vortices, separations, jet flow, etc. Thus, because of the complex geometry of shrouds, as well as strong interactions between the tip leakage and main flow, it is not easy to draw a numerical simulation with satisfactory accuracy and time-costing in shrouded turbines. This begs the question of what should the compromise be between using simplified loss models and full 3D CFD analysis for leakage modelling?

In the main flow path of a turbine the flow will always be dominated by the blades shape, while for leakage cases the flow will be dominated by the motion and evolution of small eddies. Rosic et al. [1] reviewed the importance of shroud leakage modelling in multistage turbines. The comparison of measurements and 3D calculations shows that the flow in shrouded low aspect ratio turbines is dominated by shroud leakage. This is especially true as regards the loss distribution. The rotor shroud leakage flow greatly increases the secondary flow in the downstream stators and drives low energy fluid towards mid-span. It was pointed out that with very low values of shroud leakage the flow is reasonably well modelled by a simple 1D model of the leakage flow, using sources and sinks on the casing. However, for more representative real clearances, full 3D modelling of the seal and cavity flows is necessary in order to obtain reasonable agreement. Given that developing a simulation method with both high precision and fast solving speed is imperatively demanded for engineers to assess new designs, Zhengping Zou et al. [2] suggested that one of the potential approaches for solving the problem is a method that couples low dimensional models, 1D and 2D models, of the shroud flow with 3D (three-dimensional) simulations of the main flow passage. Specifically, some boundary source and boundary sink is set on the interface between the shroud and the main flow passage, and the source term and sink term are determined by the shroud leakage model. The schematic of this process is given in Fig. 1. The results of his study [2] demonstrate that the proposed models and methods will contribute to pursue deeper understanding and better design methods of shrouded axial turbines.

Read More