Influence of Seals on Rotordynamic Stability

Numerous developments around seal technology have surfaced in the last few years. Seal performance is especially critical in turbomachinery operating under high pressure and high speed conditions. The type of seal (configuration) can influence its rotordynamics behavior and therefore affect the overall system stability. The dynamic phenomena induced by interactions between rotor and seal fluid flow in turbomachines may lead to severe lateral vibrations of their rotors. Hence, these effects must be carefully evaluated and factored in during the design of the seal system to ensure their safe operation. In general, they fall into two categories: contacting seals and non-contacting seals.

  • – Contacting seals cannot be used due to metallurgical limitations for sealing in locations where the temperature and/or the pressure are very high, and when the machine rotates at high speed. Therefore, noncontact seals are usually used in fluid machines requiring high performance.
  • – Noncontact seals are used extensively in high-speed turbomachinery and have good mechanical reliability. They are not positive sealing which means they allow a small amount of internal leakages as a tradeoff to prevent rubbing.


Radial seals (labyrinth or honeycomb) separate regions of high pressure and low pressure in rotating machinery and their function is to minimize the leakage and improve the overall efficiency of a rotating machine by ensuring that as much of the flow as possible goes through the blade channels. To provide a better understanding, the comparison of different types of seal configurations (honeycomb and brush seal) are described below.

The occurrence of self-excited rotordynamics instability is of significant importance in modem high performance turbomachinery, particularly with the present trend towards higher speeds and loading conditions. Labyrinth seals are good in restricting the flow but do not respond well to dynamics and often lead to turbomachine instabilities. These rotordynamic instabilities are due to aerodynamic excitations from the gas circulating in the narrow annular cavities on rotor-stator seals. Seals control turbomachinery leakages, coolant flows and contribute to the overall system rotordynamic stability. Such instability can lead to destructive levels of vibration. It is therefore strongly desirable that turbomachines are designed to minimize the possible occurrence of such rotordynamics instability.

Read More

An Introduction to Bearing Instability

Hydrodynamic bearings operating at high speeds encounter instability problems of oil whirl and whip. Instability may ruin not only the bearings but the entire machine. It is well-known that hydrodynamics bearings play an important role in determining and controlling the vibrations of a rotating machinery, because of the springs and dampers, and bearings strongly influence the critical speed and imbalance response. Under certain conditions, the bearings can create rotor instability which results in significant self-excited vibrations.

The types of stability here are for a balanced journal and are mentioned below. If, as time increases, the trajectory of the journal center goes to a point of the clearance circle and remains there indefinitely, then the bearing is considered to exhibit “point stability,” Fig. 1(a). If, as time increases, the trajectory does not go to a point, as shown in Fig. 1(b) and (c), then the bearing, is considered to exhibit “point instability”. Two types of instability are shown in Figure 1. In Fig 1(b) the trajectory continues to increases without bound, ultimately reaching the limit of the clearance circle, therefore, this case is called “unbounded “. As time increases eases, if the trajectory closes on itself forming a limit cycle, as shown in Fig 1(c), then the trajectory can be said to be “orbitally stable”.

Types of Stability
Figure. 1 Types of stability

Satisfactory dynamic characteristics are essential to good bearing design. Hence it is very important for the designers to predict the journal center motion trajectories. AxSTREAM Bearing™ is used to calculate the hydrodynamic characteristics based on the mass-conserving mathematical model by applying the finite difference method with the successive over-relaxation (SOR) algorithm.

Read More