Optimization of Axial Turbine Flow Paths: Preface

The decades of the 1970s and 1980s of the last century were marked by the emergence and rapid development of a new scientific direction in turbine manufacturing – optimal design. A summary of the approaches, models, and optimization methods for axial turbine flow path is presented in the monographs [13–15 and 24].

It should be noted that work on the optimal design of the flow path of axial turbines and the results obtained not only have not lost their relevance, but are now widely developing. Evidence of this is the large number of publications on the topic and their steady growth. Optimization of the turbomachine flow path is a priority area of research and development of leading companies and universities.

Without the use of optimization, it is impossible nowadays to talk about progress made in the creation of high efficiency flow paths of turbomachines. It is worth noting that the widespread use in power engineering of modern achievements of hydro-aerodynamics, the theory of thermal processes, dynamics and strength of machines, materials science, and automatic control theory, is significantly expanding the range of tasks confronting the designer and greatly complicating them.

The proposed book comprehensively addresses the problem of turbomachine optimization, starting with the fundamentals of the optimization theory of the axial turbine flow paths, its development, and ending with specific examples of the optimal design of cylinder axial turbines. It should be noted that the mutual influence of designed objects of turbine
installations and the many design parameters of each object, which the product’s effectiveness depends on, is putting the task of multiparameter optimization on the agenda.

For turbines with extractions of working media for various needs, efficiency ceases to be the sole criterion of optimality. It is necessary to enable in the optimization process such important parameters as power supply. The task of optimal design of turbine has become multifaceted. It should also be stressed that often the turbo installation mode of operation is far from nominal. So taking into account the operating mode in the optimization can significantly improve the efficiency of the turbine.

In the book, along with the widely used methods of nonlinear programming, taking into account the complexity of the task and the many varied parameters, the use of the theory of planning the experiment coupled with the LP sequence to find the optimal solution is discussed. The first chapter of the book deals with general issues of the optimal design of complex technical systems and, in particular, the problem of optimization of turbomachines, using one of the approaches to the design of turbo installations – a block-hierarchical view of the design process. With this priority is given to flow path optimization of axial turbines. The task of object design and using mathematical models is formulated. A brief overview of optimization techniques, including the optimization method for turbines considering mode of operation is given.
Read More

Page 1 of 11