Heat Balance Analysis of Thermal Energy Storage

A primary challenge of meeting the increased demand in energy is that energy supply and accessibility isn’t consistent throughout different geographical areas. Availability of energy sources is considered extremely critical in clean/renewable energy applications such as wind and solar where energy source is quite scarce and unreliable. Thermal energy storage in particular is often being looked into with the universal rise of energy demand from every part of the world. With the help of energy storage technology, it allows any excess of thermal energy to be stored and used at a later time/date where it’s needed.

Energy Storage
Source: http://www.climatetechwiki.org/sites/climatetechwiki.org/files/images/extra/storage.jpg

Thermal energy storage can be achieved with widely diverse technologies, including molten salt application. By heating the salt and storing it in insulated containers, users can pump out the salt to release the heat stored when the energy is needed. For example, with solar application the molten salt stores the excess heat that is produced during the day and releases it at night to produce electricity.
Read More

Overcoming the Use of ICEs in Hybrid Electric Vehicles with Turbomachinery – Micro-Turbine Range Extenders – Part 2

As introduced in the last blog regarding Micro-Turbine Range Extenders, we will continue the discussion of turbine engine applications in the automotive sector in this blog.

Looking to solve the problem of range anxiety in electric vehicles, many companies have started exploring the business model of recharging electric batteries in automotive vehicles with a parallel turbine engine driving a generator – coined under the term ‘micro-turbine range extender’ (or MTRE).  As seen in the turbine-powered car programs initiated in the 50s and 60s, issues with low efficiencies, slow throttle response, and capital cost of the powertrain rendered all of these programs futile shortly after their inception.  However, the revolution of electric vehicles and hybrid technologies has allowed this technology to resurface from a different direction.  With battery-driven electric motors designated as the main driver, these cars are equipped with a technology that has both energy efficient low-end torque as well as groundbreaking throttle response and many of the former drawbacks during its initial iterations are solved using an electric drivetrain.  The turbine-engine, instead of operating as the main driver, will now only operate at its most efficient power output mode and work to simply drive electricity through the generator, recharging the vehicle’s battery packs.  Acting as an isolated thermo-mechanical system, a micro-turbine range extender can be designed and optimized without having to worry about the varying duty cycles and idling that is inherent in the vehicle’s drivetrain. The thermodynamic model of a typical micro-turbine range extender can be seen below in Figure 1.

Figure 1 – Thermodynamic Formulation of a Micro-Turbine Range Extender Model in AxCYCLE™

One application within commercial vehicles that has benefitted from this technology utilizes a MTRE system developed by Wrightspeed.  The specific application lies within retrofitting refuse trucks with this electric powertrain in order to help them save an estimated $35,000 a year on fuel and maintenance costs.  In such heavy-duty applications, it is obvious that the potential for fuel cost and maintenance savings is much higher due to the large fuel burning needed for these vehicles as well as the harsh drive cycle a refuse truck goes through.  The question in the expansion of this technology generally comes in two forms: What makes the micro-gas turbine range extender a better alternative than a normal ICE hybrid option? – and – What is the viability of scaling this for consumer vehicles given the capital cost of the drivetrain?

Read More

The Simultaneous Simplicity and Complexity of Supersonic Turbines and their Modern Application

Supersonic axial turbines have attracted interest in the industry since the 1950s due to the high power they  provide, allowing a reduction in the number of low-pressure stages, and thus leading to lighter turbines as well as lower manufacturing and operational costs. Due to these valuable features, supersonic axial turbines are currently widely used in different power generation and mechanical drive fields such as rocket engine turbopumps [1, 2, 3, 4], control stages in high pressure multi-stage steam turbines, standalone single stage and 2-row velocity compound steam turbines [5, 6], ORC turbo-generator including geothermal binary power stations [7, 8, 9, 10], turbochargers for large diesel engines [11] and other applications. Therefore it is not forgotten, but instead a very important field in turbomachinery when highest specific power, compactness, low weight, low cost and ease of maintenance are dominant requirements. Especially nowadays, when development of small capacity reusable low-cost rocket launchers, compact and powerful waste heat recovery (WHR) units in the automotive industry, distributed power generation, and other fields are in extreme demand.

Meanline Results of Supersonic Turbine in AxSTREAM
Meanline Results of Supersonic Turbine in AxSTREAM

Typically, supersonic turbine consists of supersonic nozzles with a subsonic inlet and one or two rows of rotating blades. The turbine usually has partial arc admission. The total flow could go through either a single partial arc or several ones. The latter is typical for a steam turbine control stage or standalone applications. The inlet manifold or nozzles chests, as well as exhaust duct, are critical parts of the turbine as well. Due to the very frequent application of partial admission, it is not possible to implement any significant reaction degree. Thus, this kind of turbine is almost always an impulse type. However, some reaction degree could still be applied to full admission turbines. The influence of  the rotor blades profile designed for high reaction degree on rotor-stator supersonic interaction and turbine performance is not well studied at the moment.

Read More

Overcoming the Use of ICEs in Hybrid Electric Vehicles with Turbomachinery – Micro-Turbine Range Extenders

The concept of turbine-powered automotive vehicles is not necessarily an unfamiliar idea or a technology that has yet to be explored.  In fact, several prominent automakers explored this concept as early as the 1950s and 60s – with real, functional prototypes.  Notably, Rover-BRM in the UK as well as Chrysler and General Motors in the US employed turbine engine programs to test the viability of such engines in the commercial market.  The Chrysler turbine engine program began its research back in the late 1930s and eventually ran a public user program from September 1964 to January 1966 where a total of 55 cars were built.   General Motors had tested gas turbine-powered cars with its many iterations of the Firebird in the 50s and 60s.  Rover and British Racing Motors developed several prototypes of their Rover-BRM concept that actually participated in the Le Mans race three years in a row, from 1963 through 1965.  However, even Chrysler, which was considered the leader of gas turbine research in automobiles, had to eventually abandon their program in 1979 after seven iterations of the turbine engine.  Many of the initial issues with heat control and acceleration-lag were improved during the program’s lifetime, but the program had never paid off in the retail automotive sector, and its continued development was deemed too risky for Chrysler at the time.

Chrysler Turbine Car
Figure 1- Chrysler Turbine Car – Now at Display in the Walter P. Chrysler Museum

Several decades later, we are seeing a resurgence of turbine motors in automobiles, but now serving as a range extender generator for electric vehicles instead.  As with many upcoming technologies, learning from past research and failed historical attempts can bring light to the most elegant and innovative solutions for today’s modern challenges.  This revolution of an old concept shares many of the qualities that made turbine engines attractive back in its initial development phase.  Such advantages include the ability to run on any flammable liquid and the high power density that results in a significantly lower weight and size contribution than its piston engine counterpart.

Read More

The Economics of Power Generation

Economics of Power GenerationThere are two crucial factors in any power generating system: performance and economy. As we know, higher efficiency is naturally more desirable, though higher efficiency plants usually come with the price of high cost investment. A power system would simply not be feasible should one neglect one of the two main factors. A highly efficient plant would not be feasible in practice if it gives no financial incentives to the producer as well as the end-user. A good power plant design must possess a good balance of efficiency and economy.

One of the main goals in power generation practice is to deliver the lowest possible cost per unit of electricity to meet the growing demand. Often in practice, economic assessment of a power plant is depicted by their levelized cost of energy (LCOE), also known as  levelized energy cost (LEC), which is the average price per unit of power delivered to break even with total cost (capital and operating) over the length of its operating lifetime.

Generally, cost factor which contributes to power generation can be categorized into two main groups: capital cost and operating charges. Capital cost (usually consisting of a series of fixed cost factors which do not vary with the level of output) encompasses equipment, rent/land cost, and any other costs associated with the establishment of the power generation plant, up until when it’s ready to operate. This is a critical data point needed for accurate investment decision making. Whereas operating cost (combination of fixed, semi-fixed and variable charges) covers all costs related to daily operational and/or production cost incurred – which should include maintenance, fuel, feed water, etc.

Read More

An Insight into Organic Rankine Cycle Design

Nowadays, organic Rankine cycles (ORCs) are a widely studied technology. Currently, several research and academic institutions are focused on the design, optimization, and dynamic simulation of this kind of system. Regarding the numerical analysis of an ORC, several steps are required to select the optimal working fluid and the best cycle configuration, taking into account not only nominal performance indexes, but also economic aspects, off-design efficiency, the dynamic behaviour of the plant, and the plant volume or weight.

To begin, a detailed description of the heat source and heat sink, evaluation of all the technical constraints (component selection or plant layout), and both environmental and safety issues is needed. The most significant stage of the design is definitely the correct choice with both working fluid and cycle configuration. Making the wrong choice at this stage will result in poor cycle performance. A huge number of possible working fluids can be selected for ORC systems, which is one of the major advantages of these systems since they can be suitable for almost every heat source but, on the other hand, it makes the resolution of the optimization problem inevitably more complicated. Read More

The Use of SCO2 in Power Generation

Lab imageGlobal warming and the growing demand for energy are two primary problems rising in the power generation industry. A simple solution to these problems has been researched for a number of years. The SCO2 Brayton cycle is often looked into as an alternative working fluid for power generation cycles due to its compactness, high efficiency and small environmental footprint. The usage of SCO2 in nuclear reactors has been studied since the early 2000s in development of Generation IV nuclear reactors, but the idea itself can be traced back to the 1940s. During this time however, no one really looked into the potential of supercritical CO2 since steam was found to be efficient enough, not to mention it was the more understood technology when compared to SCO2. In modern times though, demand of more efficient energy continues to rise and with it, the need for SCO2.

The potential of supercritical CO2 implementation is vast across power generation applications spanning nuclear, geothermal and even fossil fuel.  The cycle envisioned is a non-condensing closed loop Brayton cycle with heat addition and rejection inside the expander to indirectly heat up the carbon dioxide working fluid.
Read More

Identifying Compressor Problems

Centrifugal Compressor for Refrigeration Because the most vital part of a refrigeration and HVAC system is to function optimally, compressors are used to raise the temperature and pressure of the low superheated gas to move fluid into the condenser. Consequently, refrigeration compressors must be properly maintained through regular maintenance, testing and inspection. There are a couple conditions which would indicate compressor problem or failures. However, with the right supervision it is possible to avoid further damage. Through this post we will identify and discuss some of these conditions:
Read More

Helicopter Engines – Understanding the Constant Threats and Analyzing their Effects with AxSTREAM

Helicopter landing on a desert
Figure 1: Helicopter landing on a desert – burnout threat

The helicopter is a sophisticated, versatile and reliable aircraft of extraordinary capabilities. Its contribution to civil and military operations due to its high versatility is significant and is the reason for further research on the enhancement of its performance. The complexity of helicopter operations does not allow  priority to be given for any of its components. However, the main engine is key for a successful flight. In case of engine failure, the helicopter can still land safely if it enters autorotation, but this is dictated by particular flight conditions. This article will focus on the possible threats that can cause engine failure or deteriorate its performance.

When a helicopter is operating at a desert or above coasts, the dust and the sand can challenge the performance of the engine by causing erosion of the rotating components, especially the compressor blades. Moreover, the cooling passages of the turbine blade can be blocked and the dust can be accumulated in the inner shaft causing imbalance and unwanted vibration. The most common threat of this kind is the brownout which is caused by the helicopter rotorwash as it kicks up a cloud of dust during landing.

Read More

The Benefits of a Variable Frequency Drive

Variable Frequency Drive is found to be very effective in assisting with energy management for HVAC systems. The main objective of this technology is to ensure that the motor only generates enough energy to power the compressor and no more. VFD provides constant load-matching capacity which results in the elimination of over-capacity running. Recently studied, current variable frequency drive benefits goes beyond the advantage of energy savings or energy efficiency. In conventional common application, the installation of variable frequency drive saves about 35% to 50% energy used by matching system capacity to the actual load.

Read More!

Page 1 of 1112345678910...Last »