Thermal Management in Aerospace Electric Propulsion Systems

The growing interest towards electric propulsion system for various applications in aerospace industry is driven first by the ambitious carbon emissions and external noise reduction targets. An electric propulsion (EP) system not only helps reduce the carbon emissions and external noise, but also helps reduce operating cost, fuel consumption and increases safety levels, performance and efficiency of the overall propulsion system. However, the introduction of electric propulsion system leads engineers to account for certain key challenges such as electric energy storage capabilities, electric system weight, heat generated by the electric components, safety, and reliability, etc. The available electric power capacity on board may be one of the major limitations of EP, when compared with a conventional propulsion system. This may be the reason electric propulsion is not the default propulsion system. Now, let’s consider how electric propulsion is used in the aerospace industry. Following the hybridization or complete electrification strategy of the electric drive pursued on terrestrial vehicles, the aerospace industry is giving great attention to the application of electrical technology and power electronics for aircrafts.

Figure 1 Aircraft Electric Propulsion Architectures
Figure 1. Aircraft Electric Propulsion Architectures. SOURCE: [1]
Electric Propulsion in aircrafts may be able to reduce carbon emissions, but only if new technologies attain the specific power, weight, and reliability required for a successful flight. Six different aircraft electric propulsion architectures are shown in Figure 1, above, one is all-electric, three are hybrid electric, and two are turbo-electric.  These architectures, rely on different electric technologies (batteries, motors, generators, etc.).

Read More

An Introduction to Thermal Management in Electric Propulsion Systems

Reduction in CO2 emissions is driving the development of different electric, turbo-electric and hybrid electric propulsion systems for various applications and industries including space, aviation, automotive and marine. Electric propulsion (EP) is not a new concept, having been studied in parallel with chemical propulsion for many years. EP is a generic name encompassing all the ways of accelerating a propellant using electric power by different possible electric and/or magnetic means. The simplest way to achieve electric propulsion is to replace the heat generated by combustion in conventional chemical engines with electrical heating.

Electric propulsion systems offer several advantages compared to other conventional propulsion systems. It not only helps reduce the environmental emissions but also helps reduce fuel consumption and increases safety levels. Electric propulsion has become a cost effective and sound engineering solutions for many applications. Electric propulsion engines are also more efficient than others. It is proven to be one of the most energy saving technologies as we can use more renewable sources of energy (due to the versatility of electricity generation) instead of non-renewable sources of energy like gasoline. The major limitation of electric propulsion, when compared with conventional propulsion is limited by the available electric power capacity on board, this may be the reason, it is not the default propulsion system.

Electric Propulsion Architectures
Figure 1. Electric Propulsion Architectures. SOURCE: [4]
Generally, electric propulsion architectures vary depending on the application. Figure 1, above, shows the EP architectures for an aviation application. These architectures rely on different electric technologies (batteries, motors, generators, and so on). Typical aircrafts use gas turbine engines as the source of propulsion power, but all electric aircraft systems use batteries as the only source of propulsion power as shown in Figure 1 on the right. The hybrid systems use gas turbine engines for propulsion and to charge batteries which also provide energy for propulsion and accessories during one or more phases of flight as shown in Figure 1 on the left. Read More

Gas Turbine Lubrication Systems

Gas turbines have had a presence in many industries for more than a century. They are a unique technology for either producing an energy or propelling a vehicle and the efficiency of modern gas turbines is being improved continuously. One of them, a cooling system, has been described in earlier blogs. Another is the lubrication system of a gas turbine which we will cover in this blog. This  system, similar to that of a piston engine or a steam turbine, provides lubrication to decrease mechanical losses and prevent of wear on friction surfaces. Another function is the removal of heat released during friction by high rotational part and transmitted from the hot part of a turbine.  The basic units which need lubrication are the bearings supporting a shaft of a gas turbine 2.

Modern Dual Journal
Figure 1. The construction of modern dual journal4
Elements for lubrication

In a common case, gas turbine installation contains three main journal bearings used to support the gas turbine rotor 3. Additionally, thrust bearings are also maintained at the rotor-to-stator axial position 4. Click here for additional information about optimization of journal bearings. The bearing has important elements in its construction to prevent leakages from a lubrication system. The work, design and analysis of labyrinth seals is describe here.

Read More

Preventing Choke and Surge in a Compressor

Turbo Compressors are used to increase the pressure of a gas, which are required in propulsion systems like a gas turbine, as well as many production processes in the energy sectors, and various other important industries such as the oil and gas, chemical industries, and many more.

Such compressors are highly specific to the working fluid used (gas) and the specific operating conditions of the processes for which they are designed. This makes them very expensive. Thus, such turbo compressors should be designed and operate with high level of care and accuracy to avoid any failure and to extract the best performance possible from the machine.

Axial Compressor and Centrifugal Compressor in AxSTREAM
Figure 1 (A) Axial Compressor (B) Centrifugal Compressor in AxSTREAM®

Turbo Compressor Characteristic Curves

The characteristic curves of any turbo compressor define the operating zone for the compressor at different speed lines and is limited by the two phenomenon called choke and surge. These two opposing constraints can be seen in Figure 2.

Choke conditions occurs when a compressor operates at the maximum mass flow rate. Maximum flow happens as the Mach number reaches to unity at some part of the compressor, i.e. as it reaches sonic velocity, the flow is said to be choked. In other words, the maximum volume flow rate in compressor passage is limited by limited size of the throat region.  Generally, this calculation is important for applications where high molecular weight fluids are involved in the compression process.

Surge is the characteristic behavior of a turbo compressor at low flow rate conditions where a complete breakdown of steady flow occurs. Due to a surge, the outlet pressure of the compressor is reduced drastically, and results in flow reversal from discharge to suction. It is an undesirable phenomenon that can create high vibrations, damage the rotor bearings, rotor seals, compressor driver and affect the entire cycle operation.

Compressor Performance Curve
Figure 2 Compressor Performance Curve

Preventing Choke and Surge Conditions

Both choke conditions and surge conditions are undesirable for optimal operation of a turbo compressor.  Each condition must be considered during design to ensure these conditions are prevented. Read More

The Role of Turbomachinery in Modern Hypersonic Cycles

In the coming age of hypersonics, a variety of engine types and cycles are being innovated and worked on. Yet turbomachinery remains unique in its ability to use a single airbreathing engine cycle to carry an aircraft from static conditions to high speeds. One of the largest limitations of turbomachinery at hypersonic speeds (Mach 5+) is the stagnation temperature, or the amount of heat in the air as it is brought to a standstill. While material improvements for turbomachinery are made over time which increases the effective range of temperatures steadily (Figure 1), this steady rate means that the ability of these materials to allow use at stagnation temperatures of more than 1600K remains unlikely any time soon.

Figure 1 Material Improvements Over Time
Figure 1 Material Improvements Over Time

This is the limiting point for traditional turbojet cycles, as Mach 5+ speeds result in temperatures far exceeding these limitations, even for the compressor. However, improvements in cryogenic storage of liquid hydrogen has allowed the concept of precooling, using the extremely low liquid temperature of hydrogen to cool the air enough to push this Mach number range, as well as improve compressor efficiency. To drive the turbine, the exhaust gas and combustion chamber can used, heating the hydrogen and reducing the nozzle temperature for given combustion properties. This has the added effect of separating the turbine inlet temperature from the combustion temperature, reducing limitations on combustion temperatures.  This type of cycle can reduce the inlet temperatures underneath material limits. Read More

Turbomachinery and Rockets – a Historical/Technical Evolution

Introduction

Quite surprisingly, rockets in their primal form were invented before turbomachinery, even though turbines and pumps are both present in modern launcher engines. However, it is interesting to note that  both can be traced to the same ancestor. In this post we will discuss some of the history and technical evolution of rockets and turbomachinery – and this all starts with an old pigeon.

Figure 1. Steam Turbine and Rocket

Rockets

Circa 400BCE, a Greek philosopher and mathematician named Archytas designed a pigeon-like shape made out of wood that was suspended with wires and propelled along these guides using steam demonstrating the action-reaction principle long before Newton formalized it as a rule in Physics. As we know today, the faster and the more steam escapes the pigeon, the faster it goes. Turn this 90 degrees to have the bird face upward, and you have a very basic rocket concept. However, rockets are a lot more complex than this, and do not typically use steam (except in the case of liquid hydrogen + liquid oxygen propellants) as the propelling fluid.  Read More

Integrated Design and Analysis of Turbofan Engines

High bypass ratio (BPR) fans are of heightened interest in the area of civil air vehicle propulsion. It increases the air inhaling and improves both the thrust and the propulsive efficiency. The specific fuel consumption is also reduced in today’s turbofan engines.

The inlet fan designs and optimizations are very important as the fan can be subjected to different inlet conditions. As a matter of fact, a modern high bypass fan system provides over 85% of the engine’s net thrust. Hence, a well-designed bypass fan system is crucial for the overall propulsion characteristics of a turbofan engine. A tool which can perform both inverse tasks and direct tasks on bypass fan system is a necessity for turbofan design.

Figure 1 - Turbofan
Figure 1 Meridional Section of the Turbofan Engine
AxSTREAM ® Streamline Solver

The AxSTREAM® streamline solver is a throughflow solver, the specificity of the outcome one should expect from this solver is up the meridional flow field. Hence, when we develop the model, we shall take Acarer and Özkol’s work [2016] as a reference example. Read More

An Overview of Axial Fans

Axial fans have become indispensable in everyday applications starting from ceiling fans to industrial applications and aerospace fans.  The fan has become a part of every application where ventilation and cooling is required, like in a condenser, radiator, electronics etc., and they are available in the wide range of sizes from few millimeters to several meters. Fans generate pressure to move air/gases against the resistance caused by ducts, dampers, or other components in a fan system. Axial-flow fans are better suited for low-resistance, high-flow applications and can have widely varied operating characteristics depending on blade width and shape, number of blades, and tip speed.

Fan Types

The major types of axial flow fans are: propeller, tube axial, and vane axial.

  • – Propellers usually run at low speeds and handle large volumes of gas at low pressure. Often used as exhaust fans these have an efficiency of around 50% or less.
  • – Tube-axial fans turn faster than propeller fans, enabling operation under high-pressures 2500 – 4000 Pa with an efficiency of up to 65%.
  • – Vane-axial fans have guide vanes that improve the efficiency and operate at pressures up to 5000 Pa. Efficiency is up to 85%.
Types of Fans
Figure 1 Different Types of Axial Fans
Aerodynamic Design of an Axial Fan

The aerodynamic design of an axial fan depends on its applications. For example, axial fans for industrial cooling applications operate at low speeds and require simple profile shapes. When it comes to aircraft applications however, the fan must operate at very high speeds, and the aerodynamic design requirements become significantly different from more traditional fan designs. Read More

Redesigning Anakin Skywalker’s Podracer

Ever since circa 100 BBY, Podracing in its modern version has drawn crowds from far far away to watch pilots compete in races like the Boonta Eve Classic which made Anakin Skywalker famous and won him his freedom. By beating Sebulba, the Dug, and the other Podracers, Anakin became the first human to be successful at this very dangerous sport. The Force helped him in his victory by sharpening his reflexes, but his repulsorcraft was also superior due to its size and the modifications made to its twin Radon-Ulzer 620C engines, especially the fuel atomizer and distribution system with its multiple igniters which makes them run similarly to afterburners seen on some military planes on Earth.

Figure 1 Pilots and their Repulsorcrafts at the Start of the Boonta Even Classic Race on Tatooine
Figure 1 Pilots and their Repulsorcrafts at the Start of the Boonta Eve Classic Race on Tatooine

Let’s take a deeper look at what repulsorcrafts are and how we can help Anakin redesign his to gain an even better advantage against the competition, provided that Watto has the correct equipment in his junk yard. Read More

Aircraft Fuel Pump Design and Optimization

Introduction to Aircraft Fuel Pumps

Aircraft fuel pumps are one of the most important elements of a fuel system. The operating characteristics and reliability of it are critical for the performance and safety of the aircraft.

Usually, the inlet pressure of the aircraft fuel pump is very low, for example, the aircraft fuel pump of a commercial aircraft needs to operate at altitudes up to 45,000 feet, where the standard atmospheric pressure is about 2.14 psi (about 0.146 atm). What’s more, because fuel is the only consumable fluid carried by the aircraft, it needs to provide all of the cooling necessary for the proper function of the airframe and engine systems. As a result, the temperature of the fuel in the pump increases significantly. The vapor pressure of common fuel used in aircraft gas turbine engines, like Jet A, Jet B, JP-4 etc., gets higher as the temperature increases. Cavitation may occur when the local static pressure in the fluid drops below the vapor pressure of the fuel.

It is very important to avoid the cavitation problem when designing the aircraft fuel pump, because it will cause serious wear, tear, damage of the impeller and performance penalty, which reduces the pumps’ lifetime dramatically. In order to prevent cavitation and have a better suction performance, aircraft fuel pumps use inducers either alone or in conjunction with radial or mixed-flow impeller depending upon the flow and pressure requirements. Figure 1 shows an assortment of fuel pump impellers including radial, mixed flow and inducer types. [1]

Fuel Pump Impeller
Fig.1 Various Fuel Pump Impellers
Designing an Aircraft Fuel Pump with AxSTREAM®

Read More