Heat Recovery Steam Generator Design

Heat recovery steam generators (HRSGs) are used in power generation to recover heat from hot flue gases (500-600 °C), usually originating from a gas turbine or diesel engine. The HRSG consists of the same heat transfer surfaces as other boilers, except for the furnace. Since no fuel is combusted in a HRSG, the HRSG have convention based evaporator surfaces, where water evaporates into steam. A HRSG can have a horizontal or vertical layout, depending on the available space. When designing a HRSG, the following issues should be considered:

hrsg-boiler
Figure 1: Schematic of a HRSG boiler
  • The pinch-point of the evaporator and the approach temperature of the economizer
  • The pressure drop of the flue gas side of the boiler
  • Optimization of the heating surfaces

The pinch-point (the smallest temperature difference between the two streams in a system of heat exchangers) is found in the evaporator, and is usually 6-10 °C, which can be seen in Figure 2. To maximize the steam power of the boiler, the pinch-point must be chosen as small as possible. The approach temperature is the temperature difference of the input temperature in the evaporator and the output of the economizer. This is often 0-5 °C.

Read More

The Economic Optimization of Renewable Energy

clean-blog-postGlobal warming is a very popular topic at the present time. With the upwards trend of clean technology and the realization that strict climate policy should be implemented, demand of renewable energy has sky-rocketed while conservative plant popularity continues to fall. Additionally, the number of coal power plants have significantly dropped since its peak era, as they are now known as the largest pollutant contribution, producing nitrogen, sulfur oxide and carbon dioxides.

Renewable energy comes from many sources: hydropower, wind power, geothermal energy, bioenergy and many more. The ability to replenish and have no limit on usage and application makes renewable energy implementation attractive. To make this even better, it also produces low emission. Theoretically, with the usage of renewable energy, human-kind should be able to meet their energy needs with minimal environmental damage. With growth rates ranging from 10% to 60% annually, renewable energy is getting cheaper through the technological improvements as well as market competition. In the end, the main goal is to maximize profit while minimizing our carbon footprint.  Since the technology is relatively new, capital costs are still considerably higher compared to more traditional (–and naturally harmful) implementations. This begs the question of exactly how we maximize the economic potential of a renewable energy power generation plant.

Read More

What is an Integrated Coal Gasification Combined Cycle (IGCC) and What are the Advantages?

integrated-coal-gasification-combined-cycle-igcc
Source: http://www.slideshare.net/AbhijitPrasad4/integrated-gasification-combined-cycle-plant

Though fossil fueled power plants aren’t as commonly used anymore, coal fired power generation is still a major source of global electricity, making up about 25% of the market in total. Compared to other options in fossil fuel power generation, coal is found to be the most economical choice as well as a reliable option. Making demands that are heavily reliant on other fuels, such as oil-fired for example, slowly levers to coal power generation. The global reserve of coal can be found in abundance when compared to other energy sources (such as oil for example) as there is about 3 times more of it. Also, IGCC comes with an economic benefit as the price of coal has remained relatively constant, which results in a higher degree of confidence when relying on coal as an energy source in the future.

How Does an IGCC Work?

The system uses a high pressure gasifier to turn coal and other carbon based fuels such as high-sulfur coal, heavy petroleum residues and biomass into pressurized clean coal synthesis gas (also known as syngas). The solid coal is gas-fired to produce syngas by gasifying coal in a closed pressurized reactor with a shortage of oxygen to ensure that coal is broken down by the heat and pressure. Before going out of the system, the syngas runs through a pre-combustion separation process to remove impurities,  starting with water-gas-shift reaction to increase concentration of hydrogen and efficiency during combustion process, to a physical separation process (through variable methods). After that, a fairly pure syngas is used as a fuel in a combustion turbine that produces electricity. Waste heat contained in a gas turbine’s exhaust is used to produce steam from feed water that further turns a steam turbine to generate additional electricity.

Read More

Utilization of Supercritical CO2 Bottoming Cycles

In the ever-expanding market for waste-heat recovery methods, different approaches have been established in order to combat the latest environmental restrictions while achieving more attractive power plant efficiencies.  As gas turbine cycles continue to expand within the energy market, one particular technology has seen a significant upsurge due to a number of its beneficial contributions.  Supercritical CO2 (S-CO2) bottoming cycles have allowed low power units to utilize waste heat recovery economically.  For many years, the standard for increasing the efficiency level of a GTU (Gas Turbine Unit) was to set up a steam turbine Rankine cycle to recycle the gas turbine exhaust heat.  However, the scalability constraints of the steam system restrict its application to only units above 120MW.

Read More

Feasibility of Mixed Flow Compressors in Aero Engines

The term, “mixed flow compressor”, refers to a type of compressor that combines axial and radial flow paths. This phenomenon produces a fluid outflow angle somewhere between 0 and 90 degrees with respect to the inlet path.  Referred to as the meridional exit angle, the angled outflow of this mixed flow configuration possesses the advantages of both axial and centrifugal compressors.  Axial compressors can produce higher order efficiencies for gas engines, but they have relatively low-pressure ratios unless compounded into several stages.  Centrifugal compressors can produce high-pressure ratios in a single stage, but they suffer from a drop in efficiency.  The geometrical distinction of mixed flow compressors allows for higher efficiencies while maintaining a limited cross-sectional area.  The trade-off for a mixed flow compressor when introduced to aero gas turbines is that there is an associated weight increase due to the longer impellers needed to cover this diagonal surface.  However, when related to smaller gas turbines, the weight increase becomes less significant to the overall performance of the engine.

Read More

Exchanging Steam for SCO2

In recent days, many people find themselves spending time and resources on uncovering the best solution to optimize the power generation cycle. Until recently, 80% of power plants worldwide (whether fossil fuel, nuclear, or clean technology) used steam as its main working fluid and while it is still the most common option, today’s power plants are finding another fluid to use.

Although supercritical CO2 study began in the 1940’s, it was disregarded as an alternative fluid option because it was expensive to explore and steam was still perfectly reliable at the time. Nowadays due to increasing quantity and quality demand in power, researchers are looking into the possibility of replacing steam with supercritical carbon dioxide. The discover of this property,  increases the incentive of exploring the technology further. This year, the US Department of Energy is awarding up to $80 million towards projects to build and operate a supercritical CO2 plant.

Read More

The Economics of Power Generation

blog-post-5
Source

Implementation feasibility of power plant design relies heavily on the economic benefits. More often than not, newer technology cannot be implemented due to high cost of electric generation which would not be acceptable in the market since energy is a price sensitive commodity. Sometimes while deciding on a design to choose, we are given a choice between a high initial equipment cost and efficiency versus a lower capital cost with lower efficiency. The designer must be able to choose which design would fit best with their needs and goals.

While running a power generation plant, there are three types of cost that need to be taken into consideration: capital cost, operational cost and financing cost. With point one and two to being of higher priority.

Read More

A Look into Combined Cycle Power Plants – Problems, Advantages and Applications.

urs Combined Cycle Power Plants are among the most common type of power generation cycle. Demand of CCP application has risen across board due to the rising energy demand (and consumption) as well as growing environmental awareness. Combined cycle is a matured energy that has been proven to generate much lower CO2 (and other environmental footprints) compared to a traditional fossil fuel steam or gas turbine power generation cycle Consequently, this application is often looked as a “better” substitute compared to other a fossil fuel technologies. That being said, CCP is still a temporary alternative to substitute SPP since although CCP generally is more environmentally friendly, CCP process still requires the combustion of fossil fuel (though at a significantly lower degree compared to SPP) for initial heat/energy source.

The application takes two kinds of thermodynamic cycle in assembly to work together from the same heat source. Fluid Air and fuel enters a gas turbine cycle (Joule or Brayton) to generate electricity, waste heat/energy from working fluid will then be extracted then go through a Heat Recovery Steam Generator and towards steam turbine cycle (Rankine) to generate extra electricity. The main advantage of this cycle combination is the improvement of overall net efficiency (around 50-60% higher compared to each cycle alone), thus, lower fuel expenses. With that being said, net efficiency of a CCP is often inflated especially on systems which use a low-temperature waste heat.

Read More

Can 1D Tools be Used to Design an HVAC System?

The heating, ventilation, and air-conditioning (HVAC) system is arguably the most complex system that is installed in a house and it is responsible for a substantial amount of the total house energy used. A right-sized HVAC system will provide the desired comfort and will run efficiently. Right-sizing of a HVAC system is the selection of equipment and the designing of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Rightsizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space, however, a full HVAC design involves more than just the load estimate calculation as this is only the first step of the iterative HVAC design procedure. Heating and cooling loads are dependent on the building location, sighting, and the construction of the house, whereas the equipment selection and the air distribution design are dependent upon the loads and each other.

Read More

Introduction to your Supercritical CO2 Power Cycle

Supercritical carbon dioxide cycles have slowly become more popular in the engineering market for electricity generation from various sources. SCO2 is found to be an ideal working fluid for generating power cycles due to its high efficiency –more than supercritical or superheated steam, which results in lower cost of electricity.

Supercritical carbon dioxide is a fluid state where carbon dioxide is operated above its critical point which causes the compound to behave as both a gas and a liquid simultaneously with the unique ability to flow as a gas though at the same time dissolve materials like a liquid. SCO2 changes density over small difference in temperature or pressure, though stay in the same phase; allowing large amount of energy to be extracted at higher temperatures.

Read More