Heat Balance Analysis of Thermal Energy Storage

A primary challenge of meeting the increased demand in energy is that energy supply and accessibility isn’t consistent throughout different geographical areas. Availability of energy sources is considered extremely critical in clean/renewable energy applications such as wind and solar where energy source is quite scarce and unreliable. Thermal energy storage in particular is often being looked into with the universal rise of energy demand from every part of the world. With the help of energy storage technology, it allows any excess of thermal energy to be stored and used at a later time/date where it’s needed.

Energy Storage
Source: http://www.climatetechwiki.org/sites/climatetechwiki.org/files/images/extra/storage.jpg

Thermal energy storage can be achieved with widely diverse technologies, including molten salt application. By heating the salt and storing it in insulated containers, users can pump out the salt to release the heat stored when the energy is needed. For example, with solar application the molten salt stores the excess heat that is produced during the day and releases it at night to produce electricity.
Read More

The Simultaneous Simplicity and Complexity of Supersonic Turbines and their Modern Application

Supersonic axial turbines have attracted interest in the industry since the 1950s due to the high power they  provide, allowing a reduction in the number of low-pressure stages, and thus leading to lighter turbines as well as lower manufacturing and operational costs. Due to these valuable features, supersonic axial turbines are currently widely used in different power generation and mechanical drive fields such as rocket engine turbopumps [1, 2, 3, 4], control stages in high pressure multi-stage steam turbines, standalone single stage and 2-row velocity compound steam turbines [5, 6], ORC turbo-generator including geothermal binary power stations [7, 8, 9, 10], turbochargers for large diesel engines [11] and other applications. Therefore it is not forgotten, but instead a very important field in turbomachinery when highest specific power, compactness, low weight, low cost and ease of maintenance are dominant requirements. Especially nowadays, when development of small capacity reusable low-cost rocket launchers, compact and powerful waste heat recovery (WHR) units in the automotive industry, distributed power generation, and other fields are in extreme demand.

Meanline Results of Supersonic Turbine in AxSTREAM
Meanline Results of Supersonic Turbine in AxSTREAM

Typically, supersonic turbine consists of supersonic nozzles with a subsonic inlet and one or two rows of rotating blades. The turbine usually has partial arc admission. The total flow could go through either a single partial arc or several ones. The latter is typical for a steam turbine control stage or standalone applications. The inlet manifold or nozzles chests, as well as exhaust duct, are critical parts of the turbine as well. Due to the very frequent application of partial admission, it is not possible to implement any significant reaction degree. Thus, this kind of turbine is almost always an impulse type. However, some reaction degree could still be applied to full admission turbines. The influence of  the rotor blades profile designed for high reaction degree on rotor-stator supersonic interaction and turbine performance is not well studied at the moment.

Read More

The Economics of Power Generation

Economics of Power GenerationThere are two crucial factors in any power generating system: performance and economy. As we know, higher efficiency is naturally more desirable, though higher efficiency plants usually come with the price of high cost investment. A power system would simply not be feasible should one neglect one of the two main factors. A highly efficient plant would not be feasible in practice if it gives no financial incentives to the producer as well as the end-user. A good power plant design must possess a good balance of efficiency and economy.

One of the main goals in power generation practice is to deliver the lowest possible cost per unit of electricity to meet the growing demand. Often in practice, economic assessment of a power plant is depicted by their levelized cost of energy (LCOE), also known as  levelized energy cost (LEC), which is the average price per unit of power delivered to break even with total cost (capital and operating) over the length of its operating lifetime.

Generally, cost factor which contributes to power generation can be categorized into two main groups: capital cost and operating charges. Capital cost (usually consisting of a series of fixed cost factors which do not vary with the level of output) encompasses equipment, rent/land cost, and any other costs associated with the establishment of the power generation plant, up until when it’s ready to operate. This is a critical data point needed for accurate investment decision making. Whereas operating cost (combination of fixed, semi-fixed and variable charges) covers all costs related to daily operational and/or production cost incurred – which should include maintenance, fuel, feed water, etc.

Read More

An Insight into Organic Rankine Cycle Design

Nowadays, organic Rankine cycles (ORCs) are a widely studied technology. Currently, several research and academic institutions are focused on the design, optimization, and dynamic simulation of this kind of system. Regarding the numerical analysis of an ORC, several steps are required to select the optimal working fluid and the best cycle configuration, taking into account not only nominal performance indexes, but also economic aspects, off-design efficiency, the dynamic behaviour of the plant, and the plant volume or weight.

To begin, a detailed description of the heat source and heat sink, evaluation of all the technical constraints (component selection or plant layout), and both environmental and safety issues is needed. The most significant stage of the design is definitely the correct choice with both working fluid and cycle configuration. Making the wrong choice at this stage will result in poor cycle performance. A huge number of possible working fluids can be selected for ORC systems, which is one of the major advantages of these systems since they can be suitable for almost every heat source but, on the other hand, it makes the resolution of the optimization problem inevitably more complicated. Read More

The Use of SCO2 in Power Generation

Lab imageGlobal warming and the growing demand for energy are two primary problems rising in the power generation industry. A simple solution to these problems has been researched for a number of years. The SCO2 Brayton cycle is often looked into as an alternative working fluid for power generation cycles due to its compactness, high efficiency and small environmental footprint. The usage of SCO2 in nuclear reactors has been studied since the early 2000s in development of Generation IV nuclear reactors, but the idea itself can be traced back to the 1940s. During this time however, no one really looked into the potential of supercritical CO2 since steam was found to be efficient enough, not to mention it was the more understood technology when compared to SCO2. In modern times though, demand of more efficient energy continues to rise and with it, the need for SCO2.

The potential of supercritical CO2 implementation is vast across power generation applications spanning nuclear, geothermal and even fossil fuel.  The cycle envisioned is a non-condensing closed loop Brayton cycle with heat addition and rejection inside the expander to indirectly heat up the carbon dioxide working fluid.
Read More

Steam and Gas for Power Generation

Nowadays, gas and steam turbines are contributing to more than 80% of the electricity generated worldwide. If we add the contribution from hydro turbines too, then we reach 98% of total production.

The improvement of the flow path is crucial, and an advanced design can be achieved through several strategies. The aerodynamic optimization of gas and steam turbines can lead to enhanced efficiency. In addition to that, the minimization of secondary losses is possible by introducing advanced endwall shaping and clearance control. Moreover, further increase of efficiency can be achieved by decreasing the losses of kinetic energy at the outlet from the last stage of the turbine. This can be done using longer last-stage blades as well as improving the diffuser recovery and stability.

Read More

Performance Simulation and Optimization of CCPP with Turbine Inlet Air Cooling

It is well established that the performance of combustion air turbines (gas turbines) is sensitive to ambient air temperature. As the ambient air temperature increases beyond standard design point  (ISASLS), the power output and exhaust gas flow rate reduces while the heat rate and exhaust gas temperature increases. While the trends are similar for heavy duty and aeroderivative gas turbines, due to the inherent nature of design the results are steeper for aeroderivatives.  Various types of turbine inlet cooling technologies such as evaporative cooling, refrigerated inlet cooling and thermal energy storage systems have been practiced with varying degree of success, each having its potential advantages and limitations.  Simplicity and cost advantage gained in evaporative cooling is offset by limitation of cooling along web bulb depression line (and is a function of site relative humidity). Refrigerated inlet cooling (direct and indirect) offer advantage of higher cooling and lesser sensitivity to site conditions, and result in greater power output with an impact on relative cost and complexity. Selection of optimum technology of turbine air inlet cooling is hence a tradeoff between competing factors.

Combined Cycle
Combined Cycle Power Plant

The complexity of combined cycles, without any turbine inlet air cooling, poses significant challenge in design of steam system and HRSG due to competing factors such as pinch point, heat and mass flows optimization etc. Knowledge of fluid viz properties of standard air (psychrometrics), standard gas for Joule Brayton cycle, steam for bottoming Rankine cycle and refrigerant for cooling system( for refrigerated inlet air cooling) as applied to complete cycle makes the process complete as well as complex. AxCYCLE™ is one such unique tool to simulate such combined cycle processes with multi fluid-multi phase flows including refrigeration. The standard HVAC features can easily be used for inlet air cooling refrigeration and integrated into the CCPP. Once a digital representation of the complex process is replicated and successfully ‘converged’ at design point, the challenge of optimization emerges. To facilitate optimization various tools namely AxCYCLE™ Map, Quest, Plan and Case are embedded integrally. As a first cut, users based on their experience apply AxCYCLE™ Map and vary one or two parameters to see the effect of operational parameters on cycle performance. AxCYCLE™ Quest opens the gates by allowing users to vary unlimited parameters, according to quasi-random Sobol sequences. mutli-Parameter optimization tasks are possible using AxCYCLE™ Plan – it uses design of experiments concepts. Once optimized the AxCYCLE™ Case tools allows off design simulation tasks. Exhibit below represents complexity of a combined cycle plant represented conveniently:

Read More

Gas for Power

Gas turbines are one of the most widely-used power generating technologies, getting their name by the production of hot gas during fuel combustion, rather than the fuel itself. Today, the industry is clearly driven by the need of fast and demand-oriented power generation, thus additional effort is put in extremely short installation times, low investment costs and an enormously growing volatility in the electrical distribution in order to achieve higher levels of reliability in the power grid [2].

The majority of land based gas turbines can be assigned in two groups [3]: (1) heavy frame engines and (2) aeroderivative engines. The first ones are characterized by lower pressure ratios that do not exceed 20 and tend to be physically large. By pressure ratio, we define the ratio of the compressor discharge pressure and the inlet air pressure. On the other hand, aeroderivative engines are derived from jet engines, as the name implies, and operate at very high compression ratios that usually exceed 30. In comparison to heavy frame engines, aeroderivative engines tend to be very compact and are useful where smaller power outputs are needed.

Read More

Steam for Power

Turbine technology being central to energy-producing industry, research and development efforts is directed towards cost-savings (increased efficiency, reliability, and component lifespan), sustainability (alternative fuels, lower emissions), and cost-competitiveness (particularly for the emerging technologies) [1]. This blog post is the first in a series of three that will focus on steam, gas and hydraulic turbines for power generation.

Going back to the Archimides era we will find the idea of using the steam as a way to produce work. However, it was not until the industrial revolution when the first reciprocating engines and turbines developed to take advantage of steam power. Since the first impulse turbine development by Carl Gustaf de Laval in 1883 and the first reaction type turbine by Charles Parsons one year later, the development of turbines have sky-rocketed, leading to a power output increase of more 6 orders of magnitude[2].

Read More

Revamping a Turbomachine Train

The demands of the plant construction and energy sector after a shorter response time for questions upon newly defined operating points of a turbomachine train are one of the biggest challenges in the service business. This becomes particularly obvious if the future points can only be realized by redesigning the flow-relevant components. Often, it is necessary to have more time to check the dynamic behavior of the train, than in the development of the appropriate revamp measures for the core machine itself.

In addition to the different utilization rates of the affected departments, the causes of the delays often lie in the lack of interface quality between the design/ calculation and train integration team. On top of that, a certain amount of time will be required by manufacturers of the critical components such as gearboxes or drives to perform a lateral check. This lateral check is not only mandatory, in case of a component modification such as changing the transmission ratio or upgrading the drive, but it is also necessary if the coupling between the train components must be changed to ensure torsional stability.

Read More

Page 1 of 512345