Choosing the Right Turbomachinery Component

Traditionally the engineering process starts with Front End Engineering Design (FEED) which is essentially the conceptual design to realize the feasibility of the project and to get an estimate of the investments required. This step is also a precursor to defining the scope for Engineering Procurement and Construction Activities (EPC). Choosing the right EPC consultant is crucial as this shapes the final selection of the equipment in the plant including turbomachinery.

Large thermal power machine

Choosing the right component for the right application is not an easy task. Too many times, one ends up choosing a component that is not the best choice by far. This is quite true when we look at component selections in the process industries compared to those in a power plant where the operating conditions are more or less constant. This improper selection of components is due to multiple reasons such as: insufficient research and studies; limitation of time, resources, budget etc. Read More

Thermal Management in Aerospace Electric Propulsion Systems

The growing interest towards electric propulsion system for various applications in aerospace industry is driven first by the ambitious carbon emissions and external noise reduction targets. An electric propulsion (EP) system not only helps reduce the carbon emissions and external noise, but also helps reduce operating cost, fuel consumption and increases safety levels, performance and efficiency of the overall propulsion system. However, the introduction of electric propulsion system leads engineers to account for certain key challenges such as electric energy storage capabilities, electric system weight, heat generated by the electric components, safety, and reliability, etc. The available electric power capacity on board may be one of the major limitations of EP, when compared with a conventional propulsion system. This may be the reason electric propulsion is not the default propulsion system. Now, let’s consider how electric propulsion is used in the aerospace industry. Following the hybridization or complete electrification strategy of the electric drive pursued on terrestrial vehicles, the aerospace industry is giving great attention to the application of electrical technology and power electronics for aircrafts.

Figure 1 Aircraft Electric Propulsion Architectures
Figure 1. Aircraft Electric Propulsion Architectures. SOURCE: [1]
Electric Propulsion in aircrafts may be able to reduce carbon emissions, but only if new technologies attain the specific power, weight, and reliability required for a successful flight. Six different aircraft electric propulsion architectures are shown in Figure 1, above, one is all-electric, three are hybrid electric, and two are turbo-electric.  These architectures, rely on different electric technologies (batteries, motors, generators, etc.).

Read More

Gas Turbine Lubrication Systems

Gas turbines have had a presence in many industries for more than a century. They are a unique technology for either producing an energy or propelling a vehicle and the efficiency of modern gas turbines is being improved continuously. One of them, a cooling system, has been described in earlier blogs. Another is the lubrication system of a gas turbine which we will cover in this blog. This  system, similar to that of a piston engine or a steam turbine, provides lubrication to decrease mechanical losses and prevent of wear on friction surfaces. Another function is the removal of heat released during friction by high rotational part and transmitted from the hot part of a turbine.  The basic units which need lubrication are the bearings supporting a shaft of a gas turbine 2.

Modern Dual Journal
Figure 1. The construction of modern dual journal4
Elements for lubrication

In a common case, gas turbine installation contains three main journal bearings used to support the gas turbine rotor 3. Additionally, thrust bearings are also maintained at the rotor-to-stator axial position 4. Click here for additional information about optimization of journal bearings. The bearing has important elements in its construction to prevent leakages from a lubrication system. The work, design and analysis of labyrinth seals is describe here.

Read More

The Role of Turbomachinery in Modern Hypersonic Cycles

In the coming age of hypersonics, a variety of engine types and cycles are being innovated and worked on. Yet turbomachinery remains unique in its ability to use a single airbreathing engine cycle to carry an aircraft from static conditions to high speeds. One of the largest limitations of turbomachinery at hypersonic speeds (Mach 5+) is the stagnation temperature, or the amount of heat in the air as it is brought to a standstill. While material improvements for turbomachinery are made over time which increases the effective range of temperatures steadily (Figure 1), this steady rate means that the ability of these materials to allow use at stagnation temperatures of more than 1600K remains unlikely any time soon.

Figure 1 Material Improvements Over Time
Figure 1 Material Improvements Over Time

This is the limiting point for traditional turbojet cycles, as Mach 5+ speeds result in temperatures far exceeding these limitations, even for the compressor. However, improvements in cryogenic storage of liquid hydrogen has allowed the concept of precooling, using the extremely low liquid temperature of hydrogen to cool the air enough to push this Mach number range, as well as improve compressor efficiency. To drive the turbine, the exhaust gas and combustion chamber can used, heating the hydrogen and reducing the nozzle temperature for given combustion properties. This has the added effect of separating the turbine inlet temperature from the combustion temperature, reducing limitations on combustion temperatures.  This type of cycle can reduce the inlet temperatures underneath material limits. Read More

Considerations when Designing Turbomachinery with sCO2 as a Working Fluid

Supercritical CO2 (sCO2) power cycles offer higher efficiency for power generation than conventional steam Rankine cycles and gas Brayton cycles over a wide range of applications, including waste heat recovery, concentrated solar power, nuclear, and fossil energy. sCO2 cycles operate at high pressures throughout the cycle, resulting in a working fluid with a higher density, which will lead to smaller equipment sizes, smaller carbon footprint, and therefore lower cost. However, the combinations of pressure, temperature, and density in sCO2 power cycles are outside the experience of many designers. Challenges in designing sCO2 cycles include turbomachinery aerodynamic and structural design, bearings, seals, thermal management and rotordynamics. According to the report from Sandia National Lab, compressors operating near critical point and turbines have received only TRL (technical readiness level) 4 and 5 out of 9. This blog discusses the impact on turbomachinery design.

Radial or Axial

The selection of radial or axial for turbomachinery is typically performed based on the operating conditions (adiabatic head H and inlet volumetric flow Q). Non-dimensional turbomachinery parameters of specific speed Ns and specific diameter Ds can be selected from NsDs charts to estimate size, speed, and type of turbomachinery. Turbomachinery types for a sCO2 recompression cycle with scales ranging from 100 kW to over 300 MW have been studied and concluded that systems below 10 MW will likely feature only radial turbines and compressors with a single-stage or low stage counts. Such recompression cycle can be simulated in AxCYCLE™ tool which is shown in Figure 1. As size increases, the most efficient configuration for the turbine and recompressor transitions from radial to axial at approximately 30 MW and 100 MW, respectively. Suitable types of turbomachinery and its components for different power range can be reviewed in Figure 2. A radial configuration for the main compressor was expected at all scales due to its lower volume flow and wider range to facilitate variation in gas properties due to operation near the critical point.

Recompression Cycle simulated in AxCYCLE
Figure 1 – Recompression Cycle Simulated in AxCYCLE

Read More

Introduction to Heat Recovery Steam Generated (HRSG) Technology

The acronym HRSG (Heat Recovery Steam Generated) is in different sources describing the operation of cogeneration and heating plants, but what does it mean? Heat Recovery Steam Generated (HRSG) technology is a recycling steam generator which uses the heat of exhaust from a gas turbine to generate steam for a steam turbine generating electricity.

The simplest scheme of a Combined Cycle Gas Turbine (CCGT) is presented in Figure 1.

The simplest scheme of CCGT
Figure 1: The simplest scheme of CCGT.

In Figure 1, the exhaust flue gases temperature on the outlet of the turbine is equal to 551.709 ℃. This is a too high a temperature to release the gasses into the environment. The excess heat is able to be disposed of while receiving additional electric power which is approximately equivalent to 30% of the capacity of a gas turbine.

To reach the maximum economical and eco-friendly criteria possible for the installation, many pieces of equipment are used including: a waste heat boiler (HRSG); turbines with a selection for a deaerator (Turbine With Extraction, Deaerator); feed and condensate pumps (PUMP2, PUMP); a condenser (Condenser); and a generator (Generator 2). Exhaust gases entering into the HRSG transfer heat to water which is supplied by the condensate pump from the steam turbine condenser to the deaerator and further by the feed pump to the HRSG. Here boiling of water and overheating of the steam occurs. Moving further, the steam enters the turbine where it performs useful work.

Read More

Turbomachinery and Rockets – a Historical/Technical Evolution

Introduction

Quite surprisingly, rockets in their primal form were invented before turbomachinery, even though turbines and pumps are both present in modern launcher engines. However, it is interesting to note that  both can be traced to the same ancestor. In this post we will discuss some of the history and technical evolution of rockets and turbomachinery – and this all starts with an old pigeon.

Figure 1. Steam Turbine and Rocket

Rockets

Circa 400BCE, a Greek philosopher and mathematician named Archytas designed a pigeon-like shape made out of wood that was suspended with wires and propelled along these guides using steam demonstrating the action-reaction principle long before Newton formalized it as a rule in Physics. As we know today, the faster and the more steam escapes the pigeon, the faster it goes. Turn this 90 degrees to have the bird face upward, and you have a very basic rocket concept. However, rockets are a lot more complex than this, and do not typically use steam (except in the case of liquid hydrogen + liquid oxygen propellants) as the propelling fluid.  Read More

Oil Systems for Turbine Lubrication

The oil system is an integral element of the turbine unit, which largely determines its reliability and trouble-free operation. The main purpose of the turbine lubricating oil system is to provide fluid friction in the bearings of turbines, generators, feed pumps, and gearboxes.

An oil system should provide:

– continuous supply of the required amount of oil in all modes of operation of the turbine unit, which guarantees:

  • – prevention of wear on friction surfaces;
  • – reduction of friction power losses;
  • – removal of heat released during friction and transmitted from the hot parts of the turbine

– maintaining the required temperature of the oil in the system; and

– cleaning the oil from contamination.

At the same time, the necessary qualities of the lubricating oil system are reliability, safety of operation, ease of maintenance.

The pressure and the temperature of the oil should be constantly monitored during operation of the turbine unit. Specifically, the lube oil temperature after the bearings requires special attention. Overheating of the bearing leads to wear of the working parts and changes in the properties of the lubricant itself. The quality of the lube oil is controlled by physicochemical characteristics such as density and viscosity. The system leaks must be stopped quickly and oil replenished on time. These factors will significantly extend the service life of the steam turbine.

Nowadays, computer simulation is a very powerful and useful tool. It helps you predict the processes occurring in the bearing chambers, and determine the flow of the working fluid when the operating modes change, all without installing expensive experimental equipment.

We suggest using the 1D-Analysis AxSTREAM NET™ tool to simulate the lubrication system. This software product allows you to quite simply, clearly and quickly build the desired model. It provides a flexible method to represent fluid path as a set of 1D elements, which easily can be connected to each other to form a thermal-fluid network. The program calculates fluid flow parameters for inlet and outlet of each element. There are many different components that allow you to simulate stationary and non-stationary modes. Also there is a convenient library of fluids. It is also possible for a user to add fluids of their choice.

The example of modeling in AxSTREAM NET™ is the system of oil supply for the K-500-240 turbine. This turbine is quite massive with bearing loads of up to 450 kN. The schematic diagram of the oil supply K-500-240-2 is shown in Figure 1.

Figure 1 Principle Scheme of K-500-240 Steam Turbine
Figure 1. Principle Scheme of K-500-240 Steam Turbine.

 

(1 – main tank; 2 & 3 – pumps; 4 – oil cooler; 5 – damp tank; 6 – journal bearings; 7 – thrust bearing).

Read More

Redesigning Anakin Skywalker’s Podracer

Ever since circa 100 BBY, Podracing in its modern version has drawn crowds from far far away to watch pilots compete in races like the Boonta Eve Classic which made Anakin Skywalker famous and won him his freedom. By beating Sebulba, the Dug, and the other Podracers, Anakin became the first human to be successful at this very dangerous sport. The Force helped him in his victory by sharpening his reflexes, but his repulsorcraft was also superior due to its size and the modifications made to its twin Radon-Ulzer 620C engines, especially the fuel atomizer and distribution system with its multiple igniters which makes them run similarly to afterburners seen on some military planes on Earth.

Figure 1 Pilots and their Repulsorcrafts at the Start of the Boonta Even Classic Race on Tatooine
Figure 1 Pilots and their Repulsorcrafts at the Start of the Boonta Eve Classic Race on Tatooine

Let’s take a deeper look at what repulsorcrafts are and how we can help Anakin redesign his to gain an even better advantage against the competition, provided that Watto has the correct equipment in his junk yard. Read More

To Retrofit or Not to Retrofit – 7 Questions to Help you Decide

One of the challenges of maintaining infrastructure is deciding how best to keep the operational costs in check while delivering the highest amount of service. This is especially true for aging equipment. One option is to replace the equipment with a newer version entirely, continue to maintain the existing machine, or a third option, retrofit the current machine with updated features.

Retrofitting is a term used in the manufacturing industry to describe how new or updated parts are fitted to old or outdated assemblies to improve function, efficiency or additional features unavailable in the earlier versions.

steam turbine in repair process, machinery, pipes, tubes, at power plant
steam turbine in repair process, machinery, pipes, tubes, at a power plant

Retrofitting, like any investment of capital requires careful thought.  SoftInWay’s Manage ring Director, Abdul Nassar has put together a simple list of questions to ask yourself before committing to a retrofit project.  Answering these seven questions before you start can save you considerable time and effort. Read More