Turbojets – Basics and Off-design Simulation

The Brayton cycle is the fundamental constant pressure gas heating cycle used by all air-breathing jet engines. The Brayton cycle can be portrayed by a diagram of temperature vs. specific entropy, or T–S diagram, to visualize changes to temperature and specific entropy during a thermodynamic process or cycle. Figure 1 shows this ideal cycle as a black line.  However, in the real world, the compression and expansion processes are never isentropic, and there is always a certain pressure loss in the combustor.  The real Brayton cycle looks more like the blue line in Figure 1.

Figure 1 T-S diagram for ideal and real Brayton cycle
(Source: https://commons.wikimedia.org/wiki/File:Ts_Real_Brayton_Cycle_2.png)

The four stages of this cycle are described as:

1-2: isentropic compression

2-3: constant pressure heating

3-4: isentropic expansion

4-0: constant pressure cooling (absent in open cycle gas turbines)

The most basic form of a jet engine is a turbojet engine. Figures 2a and 2b provide the basic design of a turbojet engine. It consists of a gas turbine that produces hot, high-pressure gas, but has zero net shaft power output. A nozzle converts the thermal energy of the hot, high-pressure gas at the outlet of the turbine into a high-kinetic-energy exhaust stream. The high momentum and high exit pressure of the exhaust stream result in a forward thrust on the engine. Read More

Design of a Competitive Axial Turbine for Downsized Turbocharged IC Engine

The following article was written by Lorenzo Baietta a student at Brunel University London and presented at the International CAE Conference Poster Competition in Vicenza, Italy. Lorenzo’s work placed 6th overall and 1st among articles written by a single author. We’re thrilled for Lorenzo and excited to continue supporting universities and young engineers all over the world. 

The continue research for engine efficiency improvements is one of the major challenges of the last decades, leading to the design of highly downsized boosted engines. Among other boosting strategies, turbocharging allows to recover part of the exhaust gas energy, improving the overall efficiency of the power unit. However, turbochargers lead to less responsive power units because of the widely known turbo-lag effect due to the inertia of the rotating parts in the system. With engine manufacturers testing different concepts to reduce this effect, for both commercial and motorsport applications, the work is about the development of a low inertia turbocharger axial turbine, evaluating pro and cons of several design solution. The idea is to initially evaluate the performance (mainly efficiency) difference between prismatic and twisted blades turbine for different size ranges. In fact, as one of the issue of axial turbines compared to radial ones is the production cost, the use of low aspect ratios blades, in such a way to minimize the difference between the use of 3D optimized turbines and prismatic turbines, should allow for more cost-effective solutions to be implemented.

After selecting a specific engine to develop the axial turbine, several CAE techniques were used to verify the idea and to obtain the best possible solution. The OEM turbocharger was 3D scanned, with a blue light technology stereoscopic optical system, to acquire accurate geometry data and calculate several properties. A 1D engine model, calibrated on the dyno, was used to calculate the aerothermal boundary conditions for the design of the turbine every 1000rpm from 1000 to 6000 to have all the required boundary conditions data to design/test the turbine at different engine operating points.

Several turbines were preliminary designed and optimized with AxSTREAM® and their performances were evaluated considering many parameters, mainly focusing on the reduction of the turbocharger spool-up time. The AxSTREAM® preliminary design module resulted crucial to compare the performance of over 1 million turbines allowing the comparison of the results with different loss models and a wide number on flow boundary conditions and geometrical constraints.

Turbine Design Methodology – Preliminary Design in AxSTREAM

The generated turbine preliminary CAD and the scanned OEM turbine mesh were used along with CAM programs at an external company to estimate the production cost of different solutions. A final turbine design was chosen, among the pre-designed ones, to be validated with generation of complete maps within the AxSTREAM® streamline solver which allowed an initial verification of the suitability of the turbine for the desired application. A further optimization of the results was obtained with increasing precision CFD simulations in the AxSTREAM® Profiling and CFD modules. 2D cascade simulations were used to optimize the stator and rotor airfoils in the Profiling module. Then, in AxCFD™, axisymmetric CFD simulations were run at several operating points to quickly investigate the suitability of the generated design for the whole power unit operating range. To conclude, full 3D CFD and FEA simulations were conducted to obtain more accurate values and complete the design process of the turbine and finally compare the data of the newly designed turbine and the OEM one.

Read More

Tidal Energy

If you’re looking for clean, free energy… a song comes to mind.

Tide after tide.
If you flow I will catch – I’ll be waiting.
Tide after tide.

With no particular link to Cyndi Lauper, waves just want to have fun so let’s allow them to do so while catching their drift as a potential energy source using tidal turbines.


Wave energy is a form of hydropower used to convert energy obtained from tides into mechanical and/or electrical power. Wave energy is produced when electricity generators are placed on the surface of the ocean. The energy provided is most often used in desalination plants, power plants and water pumps. Energy output is determined by wave height, wave speed, wavelength, and water density.

sea wave during storm
Figure 1 Ocean Waves

How are Tides Generated:

Tidal forces are periodic variations in gravitational attraction exerted by celestial bodies. It is these forces that are responsible for the currents in the world’s oceans. A local, strong attraction on a part of the ocean allied with moving celestial bodies and the rotation of the Earth leads this bulging part of water to meet the adjacent shallower waters of the shoreline which creates the tides.

Read More

Turbine Blade Cooling – An Integrated Approach

It is a well-known fact in the turbomachinery community that the highest temperature achievable at the inlet of the turbine is a critical performance parameter for the turbine. For any given pressure ratio and adiabatic efficiency, the turbine specific work is proportional to the inlet stagnation temperature. Typically, a 1% increase in the turbine inlet temperature can cause a 2-3% increase in the engine output.

Increase in net power output of a gas turbine over a one percentage point rise in turbine inlet temperature
Figure 1 Increase in net power output of a gas turbine over a one percentage point rise in turbine inlet temperature

The major limitation for the maximum achievable value of the turbine inlet temperature comes from the material used for the turbine. The maximum material temperature has to be kept in check for multiple reasons, from the physical integrity to the structural reliability, and resulting temperature needs to be less than the turbine blade material’s maximum temperature.

Read More

Flexible, Fast and High Fidelity Approach to Gas Turbine Unit Part-Load and Off-Design Performance Predictions

Gas turbine (GT) engines are the primary engines of modern aviation. They are also widely used as power propulsion engines for power stations. The specificity of these engines implies they frequently work at off-design/part load modes that occur with:

  1. Different modes of aircrafts:
    1. Ground idle mode
    2. Take off
    3. Maximum continuous mode
    4. Cruising mode
  2. Different ambient conditions
  3. Grid demands (for power generation engines and gas pumping (compressor) stations)


Due to the off-design/part load operating conditions, the parameters of the engines might change significantly, which influences not only the engine efficiency, but also the reliable work of the turbine (high temperature at turbine inlet) and compressor (surge zone) at joint operational points. This is why accurate predictions of the gas generator parameters are crucial at every off-design mode.

To define the joint operational point, the compressor and turbine maps which are created for specified ambient conditions can be used. For example, pressure equal 101.3kPa, temperature – 288.15K. Maps method is widely used, relatively simple and allows you to find the needed engine parameters in the shortest time. However, when cooling is present, engine operation at low power modes (ground idle) impede the accurate determination of joint operational conditions based on maps. The significant drawback to the maps based approach is that it does not give the full picture of the physical processes in turbomachine flow paths which is critical for off-design calculations.

Compressor and Turbine Maps
Compressor and Turbine Maps [1]
Utilization of the digital twin concept allows significant increase of the off-design performance calculation accuracy. Use of the digital equivalent of object was introduced in 2003 [2]. Despite this, less 1% of machines that are in use today are modeled with digital twin technology [3]. Utilization of digital twin leads to a significant decrease in time and cost for developing and optimization of an object.

Read More

The Pros and Cons of Wind Energy

Who knew passing wind would be so exhilarating?

Last month we discussed a few basic aspects of wind as a source of clean energy. We showed what wind was, how it forms and where it goes.  Then after going on a tangent about the history of turbines, we showed where on the Earth we could recover the highest amount of wind energy and how this potential changes with altitude. Today’s post offer the pros and cons of wind energy while touching upon several topics discussed in the previous post before diving into the optimal where and when.

Getting into the “What”

With an established worldwide potential of more than 400 TW (20 times more than what the entire human population needs) and a clean, renewable source wind is definitely attractive to the current and future generations. In terms of harvesting it, over 99% percent of wind farms in the USA are located in rural areas with 71% of them in low-income counties. Indeed, the more land is available (and the fewer buildings), the higher the possibility and interest to transform this kinetic energy into mechanical work and then most likely electricity.

Where one would see sporadic turbines on the side of the highway, these stand-alone equipment have begun to turn into actual modules (farms) that can work as an overall unit instead of individual ones. This strategy of creating a network of turbines follows the philosophy of “the Whole is Greater than the Sum of its Parts”. What this translates into is that by having 20 (arbitrary number) wind turbines working together to determine the best orientation, pitch, etc. of their blades in such a way that it least negatively impacts the downstream units we can produce more energy than if each of them were live-optimized individually (some interesting A.I. work is going into this). This means that the overall system is more efficient at converting energy and therefore it is more cost effective to provide bulk power to the electrical grid. This is similar to the concept in the post on solar energy comparing PV panels and CSP. Read the full post here. 

In terms of power production per wind turbine, the utility-scale ones range from about 100 kW to several MW for the land-based units (Offshore wind turbines are typically larger and produce more power – getting ahead of myself here but check out the figure below for wind potential in Western Europe that clearly showcases coast vs. non-coast data). On the low-power end of the spectrum, we find some below 100 kW for some non-utility applications like powering homes, telecommunications dishes, water pumping, etc. Solar power (PV) is generally regarded as the first choice for homeowners looking to become energy producers themselves, but wind turbines make an excellent alternative in some situations. It would take a wind turbine of about 10 kilowatts and $40,000 to $70,000 to become a net electricity producer. Investments like this typically break even after 10 to 20 years.

Wind potential in Western Europe
Figure 8 Wind potential in Western Europe – https://globalwindatlas.info/

Onto the “Where”

One of the elements of wind formation we covered in the last post here was a different in pressure (and therefore temperature). This simplification works rather well at the macro-scale, but as we zoom in closer to the surface we can see that wind flow speeds and patterns vary quite significantly based on more than just the general location of Earth. On top of the altitude we already discussed, factors like vegetation, presence of high-rise buildings or bodies of water come into play.

Read More

The What, Where and How of Wind Power

Choosing how to start something is often the most challenging part since the rest is usually about moving with the flow (turbomachinery pun intended). So, now that we got that out of the way let’s talk about our next topic after we do a quick flashback on the previous episodes of this Clean Energy series.

In the first post in this series, we discussed clean energy as a whole. After describing what it is and what it is not, we pointed out some of the energy sources we would analyze in subsequent articles.

The second post in this series took us on an extraterrestrial journey for two reasons: we looked at solar energy and we also went on a tangent about the rovers operating on planet Mars. I got so many “Likes” on these little droids that I figured I would keep going with them (that or I found a cool article that I’ll be sharing here) for this current post on one of the fastest-growing energy sources in the world: Wind Energy. What’s the link between Mars equipment and wind? See this recent discovery – https://www.space.com/41023-mars-wind-power-landers-experiment.html

Side note: ever wondered what would happen if the sun just blinked out? Check it out here – https://what-if.xkcd.com/49/

The wind we are looking at in today’s post is somewhere in between bovine flatulence and hurricanes in terms of intensity. Wind as we know it is created by air (or any fluid) moving from a zone of high pressure to one of low pressure. This high-to-low concentration migration might sound tricky, but it is easy to understand if you think of cars on a highway. It is more likely that cars stuck in a slow lane on the highway would move on to a lane with less traffic rather than the other way around.

Pressure varies with things like irregularities on the Earth surface, AKA altitude (“in case loss of cabin pressure occurs, oxygen masks will drop […]”), but also with temperature. This means that two people at the same altitude but in areas of different temperatures would experience different pressures. For example, think of standing at the North Pole vs. standing on a Caribbean beach vs. standing on a paddleboard in the Great Lakes. This example of standing at different places demonstrates the uneven heating of the Earth from the sun due to its shape (not flat), its rotation and its tilt, as we introduced in the previous post. But which location is under the most pressure? Colder temperature equals higher pressure.  Let me explain with another analogy, (even though this example has nothing to do with pressure, it will help the information stick).  When people get stressed, we say they are under pressure.  We can imagine somebody above the Arctic Circle is more stressed (cold, where to find food, shelter, etc.) than somebody enjoying a Mai Tai on the beach at an all-inclusive resort in Aruba. So here is your mnemonics; colder equals higher pressure.

Wind creation example
Figure 1 Wind creation example – http://www.ei.lehigh.edu/learners/energy/wind1.html 

Now that we have seen what wind was and the theory behind how it forms, we can start thinking about how to utilize this energy. Today we will talk about the aerodynamic aspect of wind turbines while in a future post we will be focusing on the assessment of such technology as wind power; pros, cons, where, what, etc.
Read More

Anti-Icing Systems for Land Based Gas Turbines

It is very important to have Anti-Icing Systems for ground-based gas turbines located in humid climates (where air relative humidity can be more than 80% and dense fog can cause air temperatures to drop below 5 0C). Such climatic conditions lead to ice formation. This ice can plug the inlet filtration system causing a significant drop in pressure in the inlet system, which in turn leads to performance loss. In extreme cases, there is even a possibility that the ice pieces get ingested into the compressor (first blade stage) which may cause foreign object damage. Ice may also cause the disruption of compressor work because of excessive vibration, or surging by decreasing the inlet flow. The major factors that lead to the ice formation in gas turbines are ambient temperature, humidity and droplet size. So, under the climatic conditions which are prone to ice formation, an anti-icing system is employed which heats the inlet air before entering the compressor. Let us discuss some important aspects of Anti-Icing Systems.

The objective of an Anti-Icing System is to prevent or limit the ice formation in the gas turbine inlet path.

Gas turbine image

Gas Turbine Anti-Icing Systems (GT-AIS) can be categorized in two groups.

  1. Inlet heating systems
  2. Component heating systems

Inlet heating systems operate by transferring heat from a heat source (exhaust gases can be used) to the cold ambient air at the entrance of the gas turbine. If the temperature of inlet air raises sufficiently by this heat transfer, icing cannot form in the gas turbine intake.

AxCYCLE™ is a tool, which provides the flexibility and convenience to study various parameters and understand the performance of thermodynamic cycles.

Read More

Steam Turbine Seal Leakage Calculation in Design

Steam turbine seals are parts inserted between moving and stationary components, to reduce and prevent steam leakage and air leaking into the low pressure areas. The leakage can happen through vane, gland, and shaft, etc. To reduce leakage from those parts while guaranteeing smooth operation of a steam turbine, engineers have to design these seals, taking into account not only efficiency, but also mechanical strength, vibration and cost.

As an example, steam turbine flow path seals improve overall efficiency installing various types of shrouds, diaphragms, and end seals which prevent idle leaks of working steam in the cylinders. In steam turbines, labyrinth seals are widely used. Some labyrinth seals are also used with honeycomb inserts. It is believed that the use of such seals makes it possible to achieve a certain gain due to smaller leaks of working fluid and more reliable operation of the system under the conditions in which the rotor’s rotating parts may rub against the stator elements. However, we can only consider it as a successful design if the structures are compliant with the manufacturing capabilities and have good vibration stability. [1] Furthermore, seal leakage can significantly affect efficiencies. Better seals increase efficiencies but add extra cost to both manufacturing and maintenance, so the design needs to be done with the turbine flow path design. Although modeling the seals in 3D CFD is theoretically possible, the calculation resources and time are extremely demanding.

This important task can be completed very easily with AxSTREAM NETTM. AxSTREAM NETTM provides a flexible method to represent fluid path and solid structure as a set of 1D elements, which can be connected to each other to form a thermal-fluid network. For each fluid path section, the program calculates fluid flow parameters for inlet and outlet cross-sections, like velocity, density, temperature, mass flow rate, etc. Therefore, the leakage from the whole system can be modeled in this network, as shown in Figure 1.

Steam Turbine Seal Leakage Calculation with AxSTREAM NET
Figure 1. Steam Turbine Seal Leakage Calculation with AxSTREAM NET™

AxSTREAM NET™ is capable of doing:

  1. Choice of seal design at the stage of the steam/gas turbine preliminary design.
  2. Calculation of balances of pressures and mass flow rate to correctly account for the efficiency of the steam/gas turbine.
  3. Calculation of seals fluid flow parameters on the startup mode to estimate the thermal expansion of rotor and casing element.
  4. Calculation of thermal boundary conditions for thermo stresses estimation.

Read More

Steam Turbine Aerodynamic Improvements for Significant Efficiency Gains

The steam turbine is one of the most important power generating equipment items in use. Around half of the electricity generated worldwide comes from steam turbines. Steam turbines can be fueled by coal, nuclear energy, petroleum or natural gas, alternatively by biomass, solar energy or geothermal energy. Thus a large amount of fuel can be saved and CO2 emissions significantly reduced by optimizing key components of these widely used machines.

An important goal in steam turbine technology is to improve efficiency. The continuous flow of steam conditions is one of the commonly accepted efficiency contributor for steam power plants. The chart below shows expected improvement in thermal efficiency for USC double-reheat fossil-fuel power units compared to common supercritical-pressure ones, according to Hitachi.

Expected Improvement in Thermal efficiency for USC power units
Figure 1: Expected improvement in thermal efficiency for USC power units.

Besides steam condition elevation, other areas help the development and refinement of innovative aerodynamic flow path design approaches and the improvement of design procedures for nozzle and blades design and analysis. Continuous growth of steam conditions since the mid-1990s and some advanced steam path design for large steam turbines have brought about 5% of efficiency gain. This effect is almost the same as the transition from subcritical-pressure steam conditions to the supercritical-pressure ones with elevated steam temperatures illustrated in the figure above. Here are some practical examples of steam turbines high efficiency, achieved during the last decade by advanced aerodynamic design (source: Leizerovich, A. Sh. Steam turbines for modern fossil-fuel power plants, ©2008 by The Fairmont Press).
Read More