Importance of Preliminary Design for Centrifugal Compressors

prelim-design
Preliminary Design in AxSTREAM

Centrifugal compressors span a number of applications including oil compression systems, gas shift systems, HVAC, refrigeration, and turbochargers. It works by using energy from the flow to raise pressure, using gas to enter the primary suction eye (impeller). As the impeller rotates, the blades on the impeller push the gas outwards from the center to the open end of impeller to form a compression. Compressors are commonly used for combustion air supplies on cooling and drying systems. In HVAC system application, fans produce air movement to the space that is being conditioned. As a key component of an energy cycle, design/performance requirement must be met. While a design can easily be scaled from an existing design through appropriate parameters, a tailored design from scratch to confirm with design requirement for the specific cycle would give a better match and improve overall cycle performance.

There are variants of non-aerodynamic constraints in centrifugal compressor design practice, from frame size to durability and ultimately cost. An optimized impeller design should also ensure that aerodynamic problems associated with the all compressor components are minimized. With all of these (aerodynamic and non-aerodynamic) design constraints, there is no better way to optimize your compressor design than starting from the preliminary step, making sure that your compressor meets your criteria from a one dimensional basis ( a step that is often overlooked in practice).
Read More

SoftInWay’s Role in Meeting the Future Needs of Steam Turbine Industry

Steam turbine technology has advanced significantly since it was first developed by Sir Charles Parson in 1884 [1]. The concept of impulse steam turbines was first demonstrated by Karl Gustaf Patrik de Laval in 1887. A pressure compounded steam turbine based on in de laval principle was developed by Auguste Rateau in 1896. Westinghouse was one of the earliest licensee for manufacturing steam turbines obtained from Sir Charles Parson and became one of the earliest Original Equipment Manufacturers (OEM) in power generation and transmission.

Over the years, as steam turbine technology advanced, the design principles were based on either impulse type or reaction type with reaction type being more efficient. Though impulse was not as efficient as reaction type, it gained popularity due to lower cost and compact size. With advances in design and optimization methods being employed, the efficiency levels between these two types are not very distant, ranging between 2 – 5% based on the size and application. Read More

The Economics of Power Generation

Economics of Power GenerationThere are two crucial factors in any power generating system: performance and economy. As we know, higher efficiency is naturally more desirable, though higher efficiency plants usually come with the price of high cost investment. A power system would simply not be feasible should one neglect one of the two main factors. A highly efficient plant would not be feasible in practice if it gives no financial incentives to the producer as well as the end-user. A good power plant design must possess a good balance of efficiency and economy.

One of the main goals in power generation practice is to deliver the lowest possible cost per unit of electricity to meet the growing demand. Often in practice, economic assessment of a power plant is depicted by their levelized cost of energy (LCOE), also known as  levelized energy cost (LEC), which is the average price per unit of power delivered to break even with total cost (capital and operating) over the length of its operating lifetime.

Generally, cost factor which contributes to power generation can be categorized into two main groups: capital cost and operating charges. Capital cost (usually consisting of a series of fixed cost factors which do not vary with the level of output) encompasses equipment, rent/land cost, and any other costs associated with the establishment of the power generation plant, up until when it’s ready to operate. This is a critical data point needed for accurate investment decision making. Whereas operating cost (combination of fixed, semi-fixed and variable charges) covers all costs related to daily operational and/or production cost incurred – which should include maintenance, fuel, feed water, etc.

Read More

Helicopter Engines – Understanding the Constant Threats and Analyzing their Effects with AxSTREAM

Helicopter landing on a desert
Figure 1: Helicopter landing on a desert – burnout threat

The helicopter is a sophisticated, versatile and reliable aircraft of extraordinary capabilities. Its contribution to civil and military operations due to its high versatility is significant and is the reason for further research on the enhancement of its performance. The complexity of helicopter operations does not allow  priority to be given for any of its components. However, the main engine is key for a successful flight. In case of engine failure, the helicopter can still land safely if it enters autorotation, but this is dictated by particular flight conditions. This article will focus on the possible threats that can cause engine failure or deteriorate its performance.

When a helicopter is operating at a desert or above coasts, the dust and the sand can challenge the performance of the engine by causing erosion of the rotating components, especially the compressor blades. Moreover, the cooling passages of the turbine blade can be blocked and the dust can be accumulated in the inner shaft causing imbalance and unwanted vibration. The most common threat of this kind is the brownout which is caused by the helicopter rotorwash as it kicks up a cloud of dust during landing.

Read More

Steam and Gas for Power Generation

Nowadays, gas and steam turbines are contributing to more than 80% of the electricity generated worldwide. If we add the contribution from hydro turbines too, then we reach 98% of total production.

The improvement of the flow path is crucial, and an advanced design can be achieved through several strategies. The aerodynamic optimization of gas and steam turbines can lead to enhanced efficiency. In addition to that, the minimization of secondary losses is possible by introducing advanced endwall shaping and clearance control. Moreover, further increase of efficiency can be achieved by decreasing the losses of kinetic energy at the outlet from the last stage of the turbine. This can be done using longer last-stage blades as well as improving the diffuser recovery and stability.

Read More

SuperTruck II Program and Waste Heat Recovery Systems

Familiar to many, the 2011 SuperTruck program was a five-year challenge set by the U.S. Department of Energy to create a Class-8 truck that improves fuel efficiency by 50 percent.  Hoping for even more groundbreaking achievements this time around, the Department of Energy has initiated a second five-year program to bring further fuel-efficiency advancements and near closer to eventual commercialization.  Cummins, Peterbilt, Daimler Trucks North America, Navistar, and Volvo Group remain the five teams involved in this R&D endeavor.  Michael Berube, head of the Energy Department’s vehicle technology office mentioned “SuperTruck II has set goals beyond where the companies think they can be.”  SuperTruck II is looking for a 100 percent increase in freight-hauling efficiency and a new engine efficiency standard of 55 percent.  With such lofty goals, the SuperTruck II development teams will need to tackle improvements in freight efficiencies from all sides.

Figure 1 - Daimler SuperTruck
Figure 1 – Daimler SuperTruck

Material considerations, body aerodynamics, low-resistance tires, predictive torque management using GPS and terrain information, combustion efficiency, and several other improvements methods on the first iteration have demonstrated how the SuperTruck II will require a multi-phase and integrated systems approach to achieve equally successful numbers. However, with an engine efficiency target that is 31 percent above the SuperTruck’s first go around, special attention will be required on engine advancement to achieve an efficiency standard of 55 percent.

Read More

Compressor Types in Air Conditioning Systems

Compressor for HVAC
Source

A compressor unit is an important component in an air conditioning system used to remove the heat laden vapor refrigerant from the evaporator. The compressor raises the temperature and pressure of the working refrigerant fluid and transforms it to a high temperature and high pressure gas. Since the compressor is one of the most vital parts of a cooling system, to be able to have an efficient working cycle, an appropriate and optimum compressor design must be installed.

Generally, there are 5 types of compressor that can be used in HVAC installations, the most common  of which being reciprocating compressors used within a smaller scale conditioning system. Reciprocating compressors utilize pistons and cylinders to compress the refrigerant and an electric motor is used to provide a rotary motion.

Read More

Thermo-Physical Properties of Fluids for Simulation of Turbomachinery

Computer simulation and use of CAE/CAD are well-established tools used to understand the critical aspects of energetics (various losses), kinematics (velocities, mach no. etc.) and thermodynamics (pressures, temperatures, enthalpy etc) in thermodynamic cycles and turbomachinery. Computational models are now enabling the design and manufacture of machines that are more economical, have higher efficiency and are more reliable. Accuracy of complex processes that are simulated depends on thermos-physical properties of the working fluid used as input data. The importance of such properties was recognized when it became evident that a steam turbine cycle can have efficiency variance by a few percentage points depending on the chosen set of fluid properties.

Today the thermo-physical properties data is represented in the form of a set of combined theoretical and empirical predictive algorithms that rest on evaluated data. These techniques have been tested and incorporated into interactive computer programs that generate a large variety of properties based upon the specified composition and the appropriate state variables. Equations of state, correlations, or empirical models are used to calculate thermos-physical properties of fluids or mixtures. Examples of this include Helmholtz energy based equations, cubic equation of state, BWR pressure explicit equations, corresponding states models, transport models, vapor pressure correlations, spline interpolations, estimation models or calculation methods for vapor-liquid equilibrium or solubility, and surface tension correlations. Further fitting techniques, and group contribution methods are incorporated. The following broad level properties are often used in simulation tools:

Read More

Micro Gas Turbines – Addressing the Challenges with AxSTREAM

During the last decade the development and extensive use of unmanned air vehicles (UAV) has accelerated the need for high performing micro gas turbines. In fact, their large energy density (Whr/kg) makes them attractive not only for UAV application, but also for portable power units, as well as for distributed power generation in applications where heat and power generation can be combined.
Micro gas turbines have the same basic operation principle as open cycle gas turbines (Brayton open cycle). In this cycle, the air is compressed by the compressor, going through the combustion chamber, where it receives energy from the fuel and thus raises in temperature. Leaving the combustion chamber, the high temperature working fluid is directed to the turbine, where it is expanded by supplying power to the compressor and for the electric generator or other equipment available [1].

Read More

Upcoming Webinar: Design and Optimization of Axial and Mixed Flow Fans for High Efficiency and Low Noise

Thursday, May 18 | 10:00 – 11:00 AM EST

Axial Fan CAD Image
Registration is now open for our May webinar demonstrating best practices for the development of competitive, high efficiency, and low noise axial and mixed flow fans for different aerodynamic loadings.

Axial and mixed flow fans have been in high demand for a number of years. The application of these machines span many different industries including HVAC, automotive, appliance, military equipment, and much more. Like many other types of turbomachinery, changing industry standards and market trends have resulted in fierce rivalry to compete on lifespan, efficiency, environmental and user friendliness, and overall quality. With this in mind, it goes without saying that companies are looking for tools needed to develop highly efficient equipment while minimizing noise as quiet fans are typically more desirable which results in higher demand and marketability.

Read More

Page 1 of 812345678