Helicopter Engines – Understanding the Constant Threats and Analyzing their Effects with AxSTREAM

Helicopter landing on a desert
Figure 1: Helicopter landing on a desert – burnout threat

The helicopter is a sophisticated, versatile and reliable aircraft of extraordinary capabilities. Its contribution to civil and military operations due to its high versatility is significant and is the reason for further research on the enhancement of its performance. The complexity of helicopter operations does not allow  priority to be given for any of its components. However, the main engine is key for a successful flight. In case of engine failure, the helicopter can still land safely if it enters autorotation, but this is dictated by particular flight conditions. This article will focus on the possible threats that can cause engine failure or deteriorate its performance.

When a helicopter is operating at a desert or above coasts, the dust and the sand can challenge the performance of the engine by causing erosion of the rotating components, especially the compressor blades. Moreover, the cooling passages of the turbine blade can be blocked and the dust can be accumulated in the inner shaft causing imbalance and unwanted vibration. The most common threat of this kind is the brownout which is caused by the helicopter rotorwash as it kicks up a cloud of dust during landing.

Read More

Steam and Gas for Power Generation

Nowadays, gas and steam turbines are contributing to more than 80% of the electricity generated worldwide. If we add the contribution from hydro turbines too, then we reach 98% of total production.

The improvement of the flow path is crucial, and an advanced design can be achieved through several strategies. The aerodynamic optimization of gas and steam turbines can lead to enhanced efficiency. In addition to that, the minimization of secondary losses is possible by introducing advanced endwall shaping and clearance control. Moreover, further increase of efficiency can be achieved by decreasing the losses of kinetic energy at the outlet from the last stage of the turbine. This can be done using longer last-stage blades as well as improving the diffuser recovery and stability.

Read More

SuperTruck II Program and Waste Heat Recovery Systems

Familiar to many, the 2011 SuperTruck program was a five-year challenge set by the U.S. Department of Energy to create a Class-8 truck that improves fuel efficiency by 50 percent.  Hoping for even more groundbreaking achievements this time around, the Department of Energy has initiated a second five-year program to bring further fuel-efficiency advancements and near closer to eventual commercialization.  Cummins, Peterbilt, Daimler Trucks North America, Navistar, and Volvo Group remain the five teams involved in this R&D endeavor.  Michael Berube, head of the Energy Department’s vehicle technology office mentioned “SuperTruck II has set goals beyond where the companies think they can be.”  SuperTruck II is looking for a 100 percent increase in freight-hauling efficiency and a new engine efficiency standard of 55 percent.  With such lofty goals, the SuperTruck II development teams will need to tackle improvements in freight efficiencies from all sides.

Figure 1 - Daimler SuperTruck
Figure 1 – Daimler SuperTruck

Material considerations, body aerodynamics, low-resistance tires, predictive torque management using GPS and terrain information, combustion efficiency, and several other improvements methods on the first iteration have demonstrated how the SuperTruck II will require a multi-phase and integrated systems approach to achieve equally successful numbers. However, with an engine efficiency target that is 31 percent above the SuperTruck’s first go around, special attention will be required on engine advancement to achieve an efficiency standard of 55 percent.

Read More

Compressor Types in Air Conditioning Systems

Compressor for HVAC
Source

A compressor unit is an important component in an air conditioning system used to remove the heat laden vapor refrigerant from the evaporator. The compressor raises the temperature and pressure of the working refrigerant fluid and transforms it to a high temperature and high pressure gas. Since the compressor is one of the most vital parts of a cooling system, to be able to have an efficient working cycle, an appropriate and optimum compressor design must be installed.

Generally, there are 5 types of compressor that can be used in HVAC installations, the most common  of which being reciprocating compressors used within a smaller scale conditioning system. Reciprocating compressors utilize pistons and cylinders to compress the refrigerant and an electric motor is used to provide a rotary motion.

Read More

Thermo-Physical Properties of Fluids for Simulation of Turbomachinery

Computer simulation and use of CAE/CAD are well-established tools used to understand the critical aspects of energetics (various losses), kinematics (velocities, mach no. etc.) and thermodynamics (pressures, temperatures, enthalpy etc) in thermodynamic cycles and turbomachinery. Computational models are now enabling the design and manufacture of machines that are more economical, have higher efficiency and are more reliable. Accuracy of complex processes that are simulated depends on thermos-physical properties of the working fluid used as input data. The importance of such properties was recognized when it became evident that a steam turbine cycle can have efficiency variance by a few percentage points depending on the chosen set of fluid properties.

Today the thermo-physical properties data is represented in the form of a set of combined theoretical and empirical predictive algorithms that rest on evaluated data. These techniques have been tested and incorporated into interactive computer programs that generate a large variety of properties based upon the specified composition and the appropriate state variables. Equations of state, correlations, or empirical models are used to calculate thermos-physical properties of fluids or mixtures. Examples of this include Helmholtz energy based equations, cubic equation of state, BWR pressure explicit equations, corresponding states models, transport models, vapor pressure correlations, spline interpolations, estimation models or calculation methods for vapor-liquid equilibrium or solubility, and surface tension correlations. Further fitting techniques, and group contribution methods are incorporated. The following broad level properties are often used in simulation tools:

Read More

Micro Gas Turbines – Addressing the Challenges with AxSTREAM

During the last decade the development and extensive use of unmanned air vehicles (UAV) has accelerated the need for high performing micro gas turbines. In fact, their large energy density (Whr/kg) makes them attractive not only for UAV application, but also for portable power units, as well as for distributed power generation in applications where heat and power generation can be combined.
Micro gas turbines have the same basic operation principle as open cycle gas turbines (Brayton open cycle). In this cycle, the air is compressed by the compressor, going through the combustion chamber, where it receives energy from the fuel and thus raises in temperature. Leaving the combustion chamber, the high temperature working fluid is directed to the turbine, where it is expanded by supplying power to the compressor and for the electric generator or other equipment available [1].

Read More

Upcoming Webinar: Design and Optimization of Axial and Mixed Flow Fans for High Efficiency and Low Noise

Thursday, May 18 | 10:00 – 11:00 AM EST

Axial Fan CAD Image
Registration is now open for our May webinar demonstrating best practices for the development of competitive, high efficiency, and low noise axial and mixed flow fans for different aerodynamic loadings.

Axial and mixed flow fans have been in high demand for a number of years. The application of these machines span many different industries including HVAC, automotive, appliance, military equipment, and much more. Like many other types of turbomachinery, changing industry standards and market trends have resulted in fierce rivalry to compete on lifespan, efficiency, environmental and user friendliness, and overall quality. With this in mind, it goes without saying that companies are looking for tools needed to develop highly efficient equipment while minimizing noise as quiet fans are typically more desirable which results in higher demand and marketability.

Read More

Turbomachinery Software for Education

Turbomachinery design has significantly evolved over the last two decades, as supporting education and training methods and techniques remains a challenge. Diversity of technologies covered in the varying courses and extensive use of software by industry designers makes the task of delivering the course curriculum that meets expectations of industry and students difficult. Many educational institutes and business use generic CAE tools for the purpose of learning turbomachinery through student projects. While generic tools have proven their value in research and design, the comprehensiveness of these tools to tackle real life turbomachinery situations is far from desired. The inexperience of fresh graduates from universities and colleges in their inability to perceive a 4D machinAxSTREAM EDUe (3D plus time), traditionally taught using a 2D blackboard, is evident. A student is not only required to have a very good understanding of underlying fundamentals, but is also required to address multitude of design, analysis and optimization problems within the limited time available for education. Coupling of theoretical and computer aided design knowledge to augment the capability of students to contribute to the industrial endeavor is necessary. Such a solution provides students with implicit understanding of the level of detail required by final designs, such as mean line design to the specification of a blade profile varying from hub to tip of a blade, and further complexities of iteration due to an aerodynamically correct blade profile being unsuitable because of stress levels or excitation frequencies and much more. AxSTREAM® EDU introduces multiple dimensions of design required by turbomachinery very early in the instruction process which, by using,  the students are able to develop insights that traditionally are difficult to attain in the same time frame. The use of AxSTREAM® EDU as a design software has been proven to multiply the skills of the students, enabling broad 3-D design considerations and visualization seldom possible otherwise.

Read More

Expander Configurations and Torsional Analysis

Lateral rotor-dynamic behavior is often discussed as one the critical aspects in determining the reliability and operability of rotating equipment. However, as multiple equipment are coupled together to form trains for centrifugal pumps, fans/blowers, compressors, steam or gas turbines and motors or generators, torsional behavior requires a thorough analysis. As per industry standards, torsional response is sought only for train units comprising of three or more coupled machines (excluding any gears).Blog 6

The configurations of the expanders used in the oil and gas industry makes it not only ideal but mandatory to perform train torsional analysis.  Expander trains are commonly used in CCU and FCU units and in the production of nitric acid. Serving the purpose of energy recovery, various arrangement for power recovery train are illustrated to the left:

Read More

Air Conditioning in Automotive

Car AC
Source

While the term of air conditioning in relation to automotive might instantly correlate to a system which provides passenger with a comfortable air temperature/environment, HVAC systems also are used for heating and cooling of batteries in such application as well as cooling of the vehicle fuel systems. Thermal management for automotive application isn’t easy though. Many factors have to be accounted for in order to build a dependable cooling system.

While talking about HVAC concerns and challenges which arise in automotive application, the biggest inconvenience commonly comes down to the lack of cold air produces. Mobile refrigeration/air conditioning systems come with quite a few concerns from two sides: the refrigeration side, where it removes heat and injects cold air, and from the electrical side which provides control. From the system, the most common challenges are found in moisture –which would fail the cooling system if present in the air, soiled condenser which would block air flow, and various other mechanical complications which might occurs.

Read More

Page 1 of 71234567