When to Upgrade Your Pump

The typical life cycle cost of an industrial pump depends on its maintenance and energy consumption. Hence, it is necessary to keep track of the pump performance and do periodic maintenance to achieve performance level close to the performance predicted by the manufacturer. There are many instances in which maintenance becomes very costly to achieve the required performance. This is the point when owners must decide about whether to upgrading the system. Figure 1 shows the life cycle cost of typical industrial pumps.

Figure 1 Life Cycle Cost of Typical Industrial Pump
Figure 1 Life Cycle Cost of Typical Industrial Pump

In recent years, there have been many innovations in implementing newer materials as well as improvements in hydraulics. Improving pump designs is an ongoing process with designers looking for increasing performance by a few percentage points. The goal of the present pump manufacturers is to offer higher efficiency and reliability, but replacing an older pumps with newer pumps can mean higher costs. The focus for replacing the internals of the pumps with improved design has gained prominence since many of the components, like the casing and rotor, of the existing pumps can be reused. So instead of replacing the entire pump, it can be upgraded or retrofitted. When it comes to an upgrade, the first thing that should be considered is the return on investment which includes the initial investment, operating costs, and the reduction in energy consumption due to the improved pump performance.

Read More

Redesigning Anakin Skywalker’s Podracer

Ever since circa 100 BBY, Podracing in its modern version has drawn crowds from far far away to watch pilots compete in races like the Boonta Eve Classic which made Anakin Skywalker famous and won him his freedom. By beating Sebulba, the Dug, and the other Podracers, Anakin became the first human to be successful at this very dangerous sport. The Force helped him in his victory by sharpening his reflexes, but his repulsorcraft was also superior due to its size and the modifications made to its twin Radon-Ulzer 620C engines, especially the fuel atomizer and distribution system with its multiple igniters which makes them run similarly to afterburners seen on some military planes on Earth.

Figure 1 Pilots and their Repulsorcrafts at the Start of the Boonta Even Classic Race on Tatooine
Figure 1 Pilots and their Repulsorcrafts at the Start of the Boonta Eve Classic Race on Tatooine

Let’s take a deeper look at what repulsorcrafts are and how we can help Anakin redesign his to gain an even better advantage against the competition, provided that Watto has the correct equipment in his junk yard. Read More

To Retrofit or Not to Retrofit – 7 Questions to Help you Decide

One of the challenges of maintaining infrastructure is deciding how best to keep the operational costs in check while delivering the highest amount of service. This is especially true for aging equipment. One option is to replace the equipment with a newer version entirely, continue to maintain the existing machine, or a third option, retrofit the current machine with updated features.

Retrofitting is a term used in the manufacturing industry to describe how new or updated parts are fitted to old or outdated assemblies to improve function, efficiency or additional features unavailable in the earlier versions.

steam turbine in repair process, machinery, pipes, tubes, at power plant
steam turbine in repair process, machinery, pipes, tubes, at a power plant

Retrofitting, like any investment of capital requires careful thought.  SoftInWay’s Manage ring Director, Abdul Nassar has put together a simple list of questions to ask yourself before committing to a retrofit project.  Answering these seven questions before you start can save you considerable time and effort. Read More

A Basic Guide to Reverse Engineering

Reverse Engineering, or back engineering, is a term used for the process of examining an object to see how it works in order to duplicate or enhance the object when you don’t have the original drawings/models or manufacturing information about an object.

There are two major reasons reverse engineering is used:

  1.  create replacement parts to maintain the function of older machines;
  2.  improve the function of existing machines while meeting all existing constraints.

 

Figure 1 Uses of Reverse Engineering
Figure 1: Uses of Reverse Engineering

Reverse engineering is extremely important in turbomachinery for replacement parts in turbines or compressors which have been operating for many years. Documentation, reports and drawings for a significant amount of these machines is not available due to a variety of reasons, therefore keeping these important machines running is a challenge. One of the options to deal with this issue is to buy the modern analogue of the machine, which is not always feasible due to economic constraints or that there is no replacement available.  Reverse engineering of the worn out parts might be the best option in the majority of cases.

In any case, the process to recovery original geometry of the object is the first and major step for all reverse engineering projects, whether you want just replacing/replicate parts or proceed with an upgrade to the machine.

Basic Steps to Any Reverse Engineering Project

Any reverse engineering process consist of the following phases:

  1. Data collection: The object needs to be taken apart and studied.  Starting in ancient times, items were disassembles and careful hand measurements were taken to replicate items.  Today, we employ advanced laser scanning tool and 3D modeling techniques to record the required information in addition to any existing documentation, drawings or reports which exists.
  2. Data processing: Once you have the data, it needs to be converted to useful information.  Computers are essential for this stage as it can involve the processing of billions of coordinates of data converting this information into 2D drawings or 3D models by utilizing CAD systems.
  3. Data modeling: This step was not available in beginning of reverse engineering. People just tried to replicate and manufacture a similar object based on the available data. Nowadays, engineers can utilize digital modelling, which represents all details of the geometrical and operational conditions of the object through a range of operation regimes. Typically, performance analysis and structural evaluation are done at this stage, by utilizing thermo/aerodynamic analytical tool, including 3D CFD and FEA approaches.
  4. Improvement/redesign of the object: If required, this is the step where innovations can be created to improve the effectiveness of the object based on the collected data about the object’s geometry and operation.
  5. Manufacturing: After the part is been modeled and meets the design requirements, the object can be manufactured to replace a worn out part, or to provide increased functionality.
Reverse Engineering in Today’s World

It very common to find the situations where reverse engineering is necessary for parts replacement, particularly with turbomachinery – steam or gas turbines, compressors and pumps. Many of these machines have been in operation for many years and experienced damaging effects of use over that time – like water droplets and solid particles erosion, corrosion, foreign objects, and unexpected operating conditions. Besides these expected needed repairs, some other reasons for reverse engineering might arise from a components part failure, as well as part alterations needed due to previous overhauls and re-rates.

All the conditions mentioned above require not only recovering the original geometry but also an understanding of the unit’s history, material properties and current operating conditions.

This article focuses on reverse engineering objects which have experienced significant change in their geometry due to the challenges of long term operation and their shape could not be directly recovered by traditional methods – like direct measurement or laser scanning.  Pictures below are examples of such objects – steam turbines blading with significant damage of the airfoils with different causes such as mechanical, water/solid particle erosion, and deposit.

Figure 2 Water droplet erosion on steam turbines long blades
Figure 2: Water droplet erosion on steam turbines long blades
Figure 3 Steam turbine blading with mechanical damage
Figure 3: Steam turbine blading with mechanical damage
Figure 4 Steam turbine control stage nozzles solid particle erosion
Figure 4 Steam turbine control stage nozzles solid particle erosion
Figure 5 Deposits on Rotating Blades
Figure 5: Deposits on Rotating Blades

In the situations shown above, recovering the original geometry may be impossible if an engineer only has the undamaged portion of original part to work with. Which means that relying on undamaged portion of an original part it may be impossible to recover the needed portion due to significant level of damage.

Looking at the eroded turbine blading in Figure 1, recovering these airfoils with sufficient accuracy based on only a scan of the original part, would be very difficult, if not impossible, considering that 1/3 to ½ of the needed profile is wiped out by erosion.

In order to recover the full airfoil shape for turbines / compressors / or pumps blading, the information about flow conditions – angles, velocities, pressure, temperature – is required to recreate the airfoils profiles and a complete 3D blade.

In many cases with significant blading damage, the information obtained from aero/thermodynamic analysis is the only source of the information available for a designer and the only possible way to recover turbomachinery blading. In fact, in such a situation, the new variant of the airfoils is developed based on aero/thermodynamic information and by considering the remaining portion of the part, which would be the most accurate representation of the original variant. A structural evaluation should also be performed for any recovered part to ensure blading structural reliability in addition to the aero/thermodynamic study.

All of these engineering steps require employment of dedicated engineering design and analysis tools, which can perform:

  • – Accurate modelling of the turbo machinery flow path,
  • – 1D/2D aero/thermodynamic analysis and in some cases 3D CFD,
  • – Profiling and 3D staking of the blading,
  • – Structural evaluation, including 3D FEA tools.

SoftInWay’s team offers a comprehensive set of turbomachinery design and analysis tools within the integrated AxSTREAM® platform, which covers many steps, required for reverse engineering activities.

In Figure 6 below, a process diagram shows how AxSTREAM® products are used for reverse engineering.

Process Diagram
Figure 6: Process diagram of AxSTREAM® products use in reverse engineering

After data collection, most of the geometry recovering steps are processed by AxSTREAM® modules:

  • AxSLICE™ to process original geometry data, available from the scanned cloud of points.
  • AxSTREAM® solver to perform 1D/2D aero/thermodynamic
  • AxSTREAM® profiler to recover profile shape and 3D airfoil stacking.
  • AxSTRESS™ for structural evaluation and 3D design.
  • AxCFD™ for detailed aerodynamic analysis and performance evaluation.

Geometry recovered in this way is now ready to be used to develop detailed 3D CAD models and 2D drawings for further technological and/or manufacturing processing.

As an example of such capabilities, Figure 7 demonstrates the reverse engineering process for the 1000 mm last stage of 200 MW steam turbine with significantly damaged blades due to water erosion.

It is possible to recognize and extract the profile angles with a specialized tool – AxSLICE™, obtain slices on the desired number of sections and insert the extracted geometric data to an AxSTREAM® project.

200 MW steam turbine water eroded 1000mm last stage blade reverse engineering process using AxSTREAM and upgraded variant of the blade
Figure 7: 200 MW steam turbine water eroded 1000mm last stage blade reverse engineering process using AxSTREAM® and upgraded variant of the blade.

The AxSTREAM® platform can provide seamless reverse engineering process for all components of complex turbomachinery.

Meet an Expert! 

Boris Frolov Dr. Boris Frolov is the Director of Engineering at SoftInWay, Inc. and manages all of the turbomachinery consulting activities. He has over 35 years of experience in steam/gas turbines design, analysis and testing.

Earning his PhD in turbine stages optimization with controlled reaction, he is an expert in steam turbines aerodynamics and long buckets aeromechanics. Dr. Frolov has over 50 publications and 7 registered patents and he shares this vast knowledge as a lecturer in steam turbines, gas dynamics and thermodynamics for students studying power engineering sciences. Prior to joining SoftInWay, he was the engineering manager at GE Steam Turbines.

SoftInWay’s Role in Meeting the Future Needs of Steam Turbine Industry

Steam turbine technology has advanced significantly since it was first developed by Sir Charles Parson in 1884 [1]. The concept of impulse steam turbines was first demonstrated by Karl Gustaf Patrik de Laval in 1887. A pressure compounded steam turbine based on in de laval principle was developed by Auguste Rateau in 1896. Westinghouse was one of the earliest licensee for manufacturing steam turbines obtained from Sir Charles Parson and became one of the earliest Original Equipment Manufacturers (OEM) in power generation and transmission.

Over the years, as steam turbine technology advanced, the design principles were based on either impulse type or reaction type with reaction type being more efficient. Though impulse was not as efficient as reaction type, it gained popularity due to lower cost and compact size. With advances in design and optimization methods being employed, the efficiency levels between these two types are not very distant, ranging between 2 – 5% based on the size and application. Read More

Leveraging AxSLICE for Centrifugal Pump Upgrades and Retrofits

Often, service companies are faced with the challenge of redesigning existing pumps that have failed in the field with extremely quick turnaround times. While there are quick-fix methods to return these pumps into operation, other more complex problems may require taking a step back and analyzing how this particular pump could be redesigned based on its current operation.  These engineering upgrades could solve recurring issues with failure modes of a certain machine, and they could also solve new capacity demands that are imposed by a customer based on their system’s upstream or downstream changes. While efficiency increases could be beneficial to the overall system, many times it is more important to solve capacity requirements and increase the life of the pump by decreasing the Net Positive Suction Head Required (NPSHr).

In this blog post, we will investigate how to move an existing centrifugal pump through the AxSTREAM platform in order to solve engineering challenges seen on common OEM pump upgrades.  With the use of AxSTREAM’s integrated platform and reverse engineering module, many of the CAE tasks that are common in an analysis such as this one can be realized in record speed. The first step of the reverse engineering process occurs in obtaining the necessary geometrical information for the desired pump. Through AxSLICE, the user can take an STL, IGES, CURVE file, or a generated cloud of points and properly transform this 3D profile into a workable geometry inside the AxSTREAM platform. In a matter of minutes, the user can outline the hub and shroud and transform a blank 3D profile into a profile defined by a series of segments.  Seen in Figure 1, the centrifugal pump is now defined by a hub, shroud, and intermediate section.

Read More

Rerates, Upgrades, and Modifications to Steam Turbine

Steam Turbine DesignSteam turbines are designed to have long, useful lives of 20 to 50 years. Often, many parts of steam turbine are custom designed for each particular application, however, standardized components are also used. It is therefore inherently possible to effectively redesign a steam turbine several times during its useful life while keeping the basic structure (foot print, bearing span , casing etc) of these turbines unchanged! Indeed this is also true for many turbomachines. These redesigns are usually referred to as rerates and upgrades, depending on the reasons for doing them. The need for changes to hardware in an existing turbine may be required for (a) efficiency upgrades, (b) reliability upgrade (including life extension), (c) rerating due to a change in process (Process HMDB, use in combined cycle etc), and (d) modification for a use different from that of its original design. Typical changes include hardware components such as buckets/blades, control system,  thrust bearing , journal bearing , brush and laby seals, nozzle/diaphragm , casing modification,  exhaust end condensing bucket valves, tip seals and coatings.

Performance and Efficiency Upgrade The basic power and/or speed requirements of a steam turbine may change after commissioning for various reasons. The most common reason is an increase (or decrease) in the power required by the driven machine due to a plant expansion or de-bottlenecking. Other reasons include a search for increased efficiency, a change in the plant steam balance, or a change in steam pressure or temperature. Because steam turbines are periodically refurbished, an opportunity exists to update the design for the current operating environment. Turbine OEM’s , services companies and end users often face a challenge of undertaking engineering work within the very tight  time frame available for maintenance.  The AxSTREAM® software suite provides users with an automated capability of rerate, upgrade and modifications for performance and efficiency objectives. A summary of such features highlighting the capabilities is presented below:

Read More

Upcoming Webinar: Design and Optimization of Axial and Mixed Flow Fans for High Efficiency and Low Noise

Thursday, May 18 | 10:00 – 11:00 AM EST

Axial Fan CAD Image
Registration is now open for our May webinar demonstrating best practices for the development of competitive, high efficiency, and low noise axial and mixed flow fans for different aerodynamic loadings.

Axial and mixed flow fans have been in high demand for a number of years. The application of these machines span many different industries including HVAC, automotive, appliance, military equipment, and much more. Like many other types of turbomachinery, changing industry standards and market trends have resulted in fierce rivalry to compete on lifespan, efficiency, environmental and user friendliness, and overall quality. With this in mind, it goes without saying that companies are looking for tools needed to develop highly efficient equipment while minimizing noise as quiet fans are typically more desirable which results in higher demand and marketability.

Read More

Rotating Equipment Specialist in the Oil and Gas Industry – A Turbomachinery Professional

Turbomachinery is a core subject in many engineering curriculums. However, many graduates joining the oil and gas industry are designated as rotating equipment engineers. Though turbomachinery and rotating equipment are used synonymously, all turbomachinery are rotating equipment but not vice versa. Turbinis in Latin implies spin or whirl, and a natural question that arises is – what are the factors that differentiate turbomachinery?  In a general sense the term, “rotating” covers  the majority equipment used in the industry be it in the upstream, mid-stream or the downstream segment. Yet top rotating equipment specialist in the industry are seen spending their prime time or often being associated with certain unique and specific types of critical rotating machines – the turbomachines.Oil and Gas

In a classical sense, turbomachines are devices in which energy is added into or taken out from a continuously flowing fluid by the dynamic action of one or more moving blade rows. By this definition propellers, wind turbines and unshrouded fans are also turbomachines but they require a separate treatment. The subject of fluid mechanics, aerodynamics, thermodynamics and material mechanics of turbomachinery when limited to machines enclosed by a closely fitting casing or shroud through which a measurable quantity of fluid passing in unit time makes the practical linkage to rotating equipment – those which absorb power to increase the fluid pressure or head (fans, compressors and pumps) and those that produce power by expanding fluid to a lower pressure or head (hydraulic, steam and gas turbines). Further classification into axial, radial and mixed type (based on flow contour), and impulse & reaction (based on principle of energy transfer) is common. It is the large range of service requirement that leads to different type of pump (or compressor) and turbine in service.

Read More

Revamping a Turbomachine Train

The demands of the plant construction and energy sector after a shorter response time for questions upon newly defined operating points of a turbomachine train are one of the biggest challenges in the service business. This becomes particularly obvious if the future points can only be realized by redesigning the flow-relevant components. Often, it is necessary to have more time to check the dynamic behavior of the train, than in the development of the appropriate revamp measures for the core machine itself.

In addition to the different utilization rates of the affected departments, the causes of the delays often lie in the lack of interface quality between the design/ calculation and train integration team. On top of that, a certain amount of time will be required by manufacturers of the critical components such as gearboxes or drives to perform a lateral check. This lateral check is not only mandatory, in case of a component modification such as changing the transmission ratio or upgrading the drive, but it is also necessary if the coupling between the train components must be changed to ensure torsional stability.

Read More