Design of Waste Heat Recovery Systems Based on Supercritical ORC for Powerful Gas and Diesel Engines

This is an excerpt from a technical paper, presented at the ASME ORC 2015 Conference in Brussels, Belgium and  written by Oleksii Rudenko, Leonid Moroz, Maksym Burlaka, and Clement Joly.  Follow the link at the end of the post to read the full study! 

1. Introduction

Internal combustion piston engines are among the largest consumers of liquid and gaseous fossil fuels all over the world. Despite the introduction of new technologies and constant improving of engines performances they still are relatively wasteful. Indeed, the efficiency of modern engines rarely exceeds 40-45% (Seher et al. (2012), Guopeng et al. (2013)) and the remainder of the fuel energy usually dissipates into the environment in the form of waste heat. The heat balance diagram of typical engine is given in Figure 1. As is evident from Figure 1, besides the mechanical work energy the heat balance includes a heat of exhaust gas, a heat of charge air, a Jacket Water (JW) heat, a heat of lubricating oil and a radiation heat. The energy from all the heat sources except the last one (radiation), due to its ultra-low waste heat recovery potential, can be used as heat sources for WHRS (Paanu et al. (2012)) and are considered here.

Heat Balance Diagram
Figure 1: Typical heat balance diagram for CAT engine (Caterpillar (2011))

Waste heat utilization is a very current task because it allows to reduce the harmful influence of ICPE operation on the environment as well as to obtain additional energy and to reduce the load on the engine’s cooling system. Different WHRS can produce heat energy, mechanical energy or electricity and combinations of the converted energy forms exist as well. In general, the type of WHRS to be used is determined by the engine type, fuel cost, available energy customers and other factors. In the presented paper, only WHRS for mechanical power and electricity production were considered because these kinds of energy are preferable for this type of applications and they can be easily converted into other forms of energy.

For vehicle engines the WHRS based on Organic Rankine Cycle (ORC) are the most commercially developed (Paanu et al. (2012)). Because of strict restrictions on weight and dimensions, the
mentioned systems typically operate on the base of a simple or recuperated ORC and utilize only high temperature waste heat from the exhaust gases and the exhaust gas recirculation. They usually produce mechanical power or electricity. More complex cycles and a larger number of heat sources are used for waste heat recovery from powerful internal combustion engines where additional weight and dimensions are not crucial factors. Waste heat from stationary, marine and another more powerful ICPE can be recovered using a typical steam bottoming cycle. Steam WHRS allow utilizing almost all a high temperature waste heat and partially utilizing a low temperature heat. The high efficiency steam WHRS are presented in (MAN Diesel & Turbo (2012), Petrov (2006)), they provide up to 14.5% of power boost for the engine.

Addition of the internal heat recuperation to a WHR cycle:

  1. Appropriate working fluid selection;
  2. Increment of initial parameters of bottoming cycle up to supercritical values;
  3. Maximize waste heat utilization due to the usage of low temperature heat sources;
  4. Bottoming cycle complexification or usage of several bottoming cycles with different fluids
    (Maogang (2011)).



This paper focuses on the development of new WHRS as an alternative to high efficiency steam bottoming cycles by accounting for the latest progress in the field of waste heat recovery. The
application range of the proposed system extends to powerful and super powerful ICPEs.

The goal of the presented work is the development of a new, high efficiency WHRS for powerful and super powerful ICPEs based on ORC principles. To solve the assigned task, a thorough study of the currently existing works was performed and the best ideas were combined. The principles of the maximum waste heat utilization, maximum possible initial cycle parameters, recuperation usage and single working fluid were assumed as a basis for the new WHRS design.

Read the full paper here

Leave a Reply