Heat Recovery Steam Generator Design

Heat recovery steam generators (HRSGs) are used in power generation to recover heat from hot flue gases (500-600 °C), usually originating from a gas turbine or diesel engine. The HRSG consists of the same heat transfer surfaces as other boilers, except for the furnace. Since no fuel is combusted in a HRSG, the HRSG have convention based evaporator surfaces, where water evaporates into steam. A HRSG can have a horizontal or vertical layout, depending on the available space. When designing a HRSG, the following issues should be considered:

Figure 1: Schematic of a HRSG boiler
  • The pinch-point of the evaporator and the approach temperature of the economizer
  • The pressure drop of the flue gas side of the boiler
  • Optimization of the heating surfaces

The pinch-point (the smallest temperature difference between the two streams in a system of heat exchangers) is found in the evaporator, and is usually 6-10 °C, which can be seen in Figure 2. To maximize the steam power of the boiler, the pinch-point must be chosen as small as possible. The approach temperature is the temperature difference of the input temperature in the evaporator and the output of the economizer. This is often 0-5 °C.

Figure 2: Example of a heat load graph for HRSG boiler

The pressure drop (usually 25-40 mbar) of the flue gas side also has an effect on the efficiency of power plant. The heat transfer of the HRSG is primarily convective. The flow velocity of the flue gas has an influence on the heat transfer coefficient. The evaporator of heat recovery boiler can be of natural or forced circulation type. The heat exchanger type of the evaporator can be any of parallel-flow, counter-flow or cross-flow. In parallel-flow arrangement the hot and cold fluids move in the same direction and in counter-flow heat exchanger fluids move in opposite direction.

Leave a Reply

Your email address will not be published. Required fields are marked *