#### Can 1D Tools be Used to Design an HVAC System?

The heating, ventilation, and air-conditioning (HVAC) system is arguably the most complex system that is installed in a house and it is responsible for a substantial amount of the total house energy used. A right-sized HVAC system will provide the desired comfort and will run efficiently. Right-sizing of a HVAC system is the selection of equipment and the designing of the air distribution system to meet the accurate predicted heating and cooling loads of the house. Rightsizing the HVAC system begins with an accurate understanding of the heating and cooling loads on a space, however, a full HVAC design involves more than just the load estimate calculation as this is only the first step of the iterative HVAC design procedure. Heating and cooling loads are dependent on the building location, sighting, and the construction of the house, whereas the equipment selection and the air distribution design are dependent upon the loads and each other.

#### Mixed Flow Pumps

As with any turbomachinery, pump design requires a lot of effort on finding the right blade profile for the specified application. As there is no right or wrong in the process, engineers have to make some general assumptions as a starting point. Generally, we can say that the focus of this task is to minimize losses. It is obvious that the selected blade shape will affect several important hydrodynamic parameters of the pump and especially the position of optimal flow rate and the shape of the overall pump performance curves. In addition to axial and radial pump design in recent years, we also have seen the development of mixed-flow pumps. A mixed flow pump is a centrifugal pump with a mixed flow impeller (also called diagonal impeller), and their application range covers the transition gap between radial flow pumps and axial flow pumps.

Let’s consider a dimensionless coefficient called “specific speed” in order to be able to compare different pumps with various configurations and features. The “specific speed” is obtained as the theoretical rotational speed at which a geometrically-similar impeller would run if it were of such a size as to produce 1 m of head at a 1l/s flow rate. In formulas:
where ns is the specific speed, n the rotational speed, Q is the volume flow rate, H is total head and g is gravity acceleration.

#### Foundations of Rotordynamics – Part 1

In order to succeed as an engineer focused on rotor dynamics in rotating equipment, it is important to be fully aware of its foundation. The foundations of rotor dynamics consists of two parts, lateral analysis and torsional analysis. For part one of this blog, I will be focusing on lateral analysis and then exploring torsional analysis in part two next week.

Lateral analysis, also referred as critical speed analysis, is the study of when rotational speed meets or exceeds the shaft natural frequency. This is important since not knowing the critical speed can lead to instability, unbalance or even cause unknown forces to alter the functionality of rotating machinery. Since a rotating machinery consists of many components (rotor, bearing, motor, seals, etc), lateral analysis is made up of three categories: undamped critical speed analysis, steady state synchronous analysis (also known as damped unbalance response analysis) and stability analysis.

#### Introduction to your Supercritical CO2 Power Cycle

Supercritical carbon dioxide cycles have slowly become more popular in the engineering market for electricity generation from various sources. SCO2 is found to be an ideal working fluid for generating power cycles due to its high efficiency –more than supercritical or superheated steam, which results in lower cost of electricity.

Supercritical carbon dioxide is a fluid state where carbon dioxide is operated above its critical point which causes the compound to behave as both a gas and a liquid simultaneously with the unique ability to flow as a gas though at the same time dissolve materials like a liquid. SCO2 changes density over small difference in temperature or pressure, though stay in the same phase; allowing large amount of energy to be extracted at higher temperatures.

#### Design Challenges of Boiler Feed Pump Turbines in Thermal Power Stations

The design of a boiler feed pump turbine features some unique characteristics that presents certain challenges in terms of efficiency management, varying operating ranges, and many other features.  In order better understand the accepted designs of Boiler Feed Pump Turbines (BFPTs), it is important to know how the operation of steam turbines used to drive boiler feed pumps can fundamentally improve fossil and nuclear plants.  Much like the design of mechanical drive turbines, feed pump turbines also feature the same thermodynamic objectives as the main turbine and all of the engineering difficulties with optimal blade design, rotor and bearing harmonic conditions, ideal flow path definitions, and so on.  However, some distinctions can make a BFPT design particularly distinct from a regular mechanical drive turbine.  Figure 1 shows a basic heat balance diagram for a plant using a boiler feed pump turbine arrangement.

Inherent in its name, the BFPT must be fully compatible with the boiler feed pump. In other words, the necessary power and speed of the BFPT are determined by the requirements of the pump. In a fully integrated and dynamic system such as this, a large portion of the design requires developing a proper heat balance that will optimize the plant performance. In general, the boiler feed pump turbine uses both steam from the boiler and the main turbine to drive the mechanical shaft connected to the boiler feed pump. This arrangement has proven highly successful in efficiently applying the steam’s thermal energy throughout the plant. In certain arrangements, the BFPT can instead accept steam from cold reheat lines, main unit crossover piping lines, and different extractions from the main turbine. Regardless of the source, one distinction specifically unique to the BFPT is that it must accept steam from two separate sources.

#### Importance and Modelling of Internal Combustion Engine Cooling Systems

In an internal combustion engine, combustion of air and fuel takes place inside the engine cylinder and hot gases are generated with temperature of gases around 2300-2500°C which may result in not only burning of oil film between the moving parts, but also in seizing or welding of the stationery and moving components. This temperature must be reduced such that the engine works at top efficienc,  promoting high volumetric efficiency and ensuring better combustion without compromising the thermal efficiency due to overcooling. Most importantly, the engine needs to function both in the sense of mechanical operation and reliability. In short, cooling is a matter of equalization of internal temperature to prevent local overheating as well as to remove sufficient heat energy to maintain a practical overall working temperature.

It is also important to note that about 20-25% of the total heat generated is used for producing brake power (useful work). The cooling system should be designed to remove 30-35% of total heat and the remaining heat is lost in friction and carried away by exhaust gases.

#### Explaining Geothermal Cycles

Geothermal energy has become more and more popular globally due to its sustainability and economic stand point. Geothermal power plants run on a variety of temperatures and utilize hydrothermal resources (water/steam and heat) from below the earth surface to generate electricity for people’s daily consumption. Resources can come from dry steam or hot water wells.

There are three kinds of Geothermal cycle for power plants: binary cycle, dry steam and flash steam. Binary cycle power plants use the heat transfer from geothermal hot water to secondary fluids with a low boiling point at the lower end of standard geothermal temperature (225 to 360 F). This heat will cause the secondary fluid to bubble and turn into steam in the heat exchanger, which is then used to turn the turbine. Since water and secondary fluids are kept apart in the cycle, air emission is minimized.

#### Driving Turboexpander Technology

Turboexpanders are used in a number of applications, including floating LNG (liquefied natural gas), LPG (liquefied petroleum gas) / NGL (natural gas liquids), dew point control, and ethylene plants.  Used as a highly efficient system that takes advantage of high pressure, high-temperature flows, the turboexpander both produces cryogenic temperatures and simultaneously converts thermal energy into shaft power.  Essentially, a turboexpander is comprised of a radial inflow expansion turbine and a centrifugal compressor combined as a single unit on a rigid shaft. The process fluid from a plant stream will run through the expansion turbine to both provide low-temperature refrigeration and convert thermal energy to mechanical power as a byproduct.  First, the gas will radially enter the variable inlet nozzles (or guide vanes) of the turbine, which will allow for a localized increase in fluid velocity prior to entering the turbine wheel.  The turbine wheel will accept this high-temperature, high-pressure, accelerated gas and convert it into mechanical energy via shaft rotation. The primary product of a turboexpander manifests at the outflow of this turbine.  After the process gas passes through the turbine wheel, this gas has expanded so dramatically that it produces cryogenic temperatures colder than any other equipment in the plant.

The useful mechanical energy converted from this system is generally used to drive a centrifugal compressor positioned on the opposite end of the shaft.  In the case of this expander-compressor setup, the mentioned turboexpander technology avoids the excessive use of fuel consumption seen in other systems, and significantly decreases the CO2 footprint of the overall design.  As well, there are various examples of turboexpanders that use an expander-generator setup, which converts the mechanical energy from the turbine into direct electrical power.  Turboexpanders have come a long way in the last 40 years.  With the advent of magnetic bearings and more advanced sealing systems, turboexpanders have been able to handle shaft speeds in large and small machines of up to 10,000 rpm and 120,000 rpm, respectively.  Moreover, innovations in specific CFD modules for turbomachinery have allowed turboexpander systems to achieve efficiencies upwards of 90%.

#### Using 1D Models to Predict the Thermal Growth and Stresses During The Start up and Shutdown Phase of a Steam Turbine

Steam turbines are not just restricted to conventional or nuclear power plants, they are widely used in combined cycle power plants, concentrated solar thermal plants and also geothermal power plants. The operational requirements of a steam turbine in the combined cycle and CSP’s means that they operate under transient conditions. Even in conventional steam turbines, the market requirements are changing with requirements for faster and more frequent start-up which can result into faster deterioration of the equipment and reduced lifespan. During the startup phase, significant heat exchange takes place between the steam and the structural components that include the valves, rotor and casing. The accuracy of the life prediction is strongly affected and dependent on the accuracy of the transient thermal state prediction [1].

Though the expansion of steam takes place in the nozzles and blades, the influence of the leakage steam during the startup phase is significant with steam expanding through the labyrinths resulting in expansions, condensation, and increased velocities which may even reach supersonic levels. During cold start, the flow is minimal, the temperature of the metal is at room temperature and heat exchange happens between the steam and metal parts resulting in thermal stress.

#### Understanding the Characteristics of Varying Centrifugal Blower Designs

Many people speculate about the confusion on what is considered a compressor, a blower, or simply a fan.  In essence, each of these turbo-machines achieve a pressure rise by adding velocity to a continuous flow of fluid.  The distinctions between fans, blowers, and compressors are quite simply defined by one parameter, the specific pressure ratio.  Each machine type, however, utilizes a number of different design techniques specific to lower and higher-pressure applications.  As per the American Society of Mechanical Engineers (ASME), the specific pressure is defined as the ratio of the discharge pressure over the suction pressure (or inlet pressure).  The table shown below defines the range at which fans, blowers, and compressors are categorized.

Similarities between the design of fans and blowers occur near the lower end of a blower’s range.  As well, many design parallels exist between high-pressure blowers and compressors.  For the article, we will be investigating the different design characteristics of centrifugal blowers. Blower selection depends on a number of factors including operating range, efficiency, space limitations, and material handled.   Figure 1 shows a number of different impeller blade designs that are available for centrifugal blowers.