Top 5 Best Practices for Selecting Software for Your Next Turbomachinery Design Project

The airport was bustling with people. The boards were a mixture of delayed and on-time flights. My flight to San Diego for the EUEC Conference was one of the delayed. This happens when you travel as much as I do, so I found a quiet spot to get a few hours of work in while I waited. In the café at JFK, I overheard a conversation between two other detained travelers discussing what they wish they knew before purchasing software tools and/or hiring external consulting companies.

Their pain points were identical to the pain points I’ve encountered in my decade plus years at SoftInWay meeting with design engineers, engineering managers, CxOs, and other non-technical people in my industry (simulation software and R&D of turbomachinery). Over the years, I have used the knowledge gained in my experience to help guide people in making big decisions such as purchasing turbomachinery design software or hiring consultants on a new project and I wanted to share with the blog community as well.

Here are the top 5 Best Practices I suggest everyone use before embarking on their next big software purchase or hiring consultants for their design project.

Read More

A Small Review with a Big Context

This being my last post for 2017, I wanted to do a short review of what we have been discussing this year. During the beginning of the year, I decided to focus on the 3D analyses and capabilities that were implemented in our AxCFD and AxSTRESS modules for fluid and structural dynamics. With that in mind, my posts were tailored towards such, highlighting the importance of the right turbulence modelling for correct flow prediction. Among other topics, we studied the key factors that lead to resonance, the importance of not neglecting the energy transfer between fluid and structure, and the great advantage that increasing computing capacity offers to engineers in order to understand turbomachinery in depth. However, no matter how great the benefits are, the approximations and errors from CFD can still lead to high uncertainty. Together, we identified the most important factors, from boundary conditions all the way to mesh generation and simulation of cooling flows, and we put an emphasis on the necessary development of uncertainty quantification models. This 3D module related topic finished with an extensive article on fatigue in turbomachinery which plays a crucial role in the failure of the machine, and was the cause for many accidents in the past.

AxCFD
SoftInWay’s AxCFD Module

The second part of my posts focused on different industries that rely on turbomachinery as we tried to identify the challenges that they face. Being fascinated by the space industry along with the increasing interest of the global market for launching more rockets for different purposes, I started this chapter with the description of a liquid rocket propulsion system and how this can be designed or optimized using the AxSTREAM platform. Moving a step closer to earth, next I focused on the aerospace industry and the necessity for robust aircraft engines that are optimized, highly efficient, and absolutely safe. One of the articles that I enjoyed the most referred to helicopters and the constant threats that could affect the engine performance, the overall operation and the safety of the passengers. Dust, salt and ice are only a few of the elements that could affect the operation of the rotating components of the helicopter engine, which allows us understand how delicate this sophisticated and versatile aircraft is.
Read More

Gas Turbine Cooling – Enhance Current Advances with SoftInWay

The development of turbine cooling is a process that requires continuous improvements and upgrades. A gas turbine engine is a thermal device and so it is composed of a range of major and minor cooling and heating systems. Turbine cooling is just a small part of the total engine system cooling challenges (combustor system cooling, heat exchangers, casings, bores, compressor and turbine disks, bearings and gears etc.). However, effective turbine cooling consists of the greatest economic factor when it comes to engine development and repair costs, representing up to 30% of the total cost.

As a thermodynamic Brayton cycle, the performance of the gas turbine engine is influenced by the turbine inlet temperature, and the raise of this temperature can lead to better performance and more efficient machines. Current advancements in the development of cooling systems allows most modern gas turbines to operate in temperatures much higher than the material melting point. Of course nothing would have been possible without the parallel development of advanced materials for structural components as well as advances in computing resources and consequently in aerodynamic design, prognostic and health monitoring systems and lifing processes. In particular, as far as the lifing of the machine is concerned, the high pressure (HP) turbine containing the most advanced high temperature alloys and associated processing methods, as well as the combustor which represents the key components that have limited life and tend to strictly dictate the cycles of operation and the allowable time on the wing.

Turbine Cooling Scheme Designed in AxSTREAM NET
Figure 1. Turbine Cooling Scheme Designed in AxSTREAM NET

Read More

Design of Inlet Guide Vane (IGV) for Centrifugal Compressors

All centrifugal compressor designers want to achieve the highest efficiency as well as wide operating range. With this in mind, the inlet guide vane (IGV) is a convenient and economic option for various applications.

IGVs are a series of blades circumferentially arranged at the inlet of compressor, driven electronically or pneumatically.By adjusting the orientation of IGVs, the air flow enters the impeller at a different direction therefore changing the flow behavior while affecting the passing mass flow rate (throttling). This can effectively reduce the power consumption to increase the compressor’s overall efficiency while avoiding surge to provide a better off design working range.

The designer needs to optimize blade profile and positioning of the IGV for efficient operation of a compressor, which can be a tedious job if one does not have a handy tool. Figure 1 shows an example of IGV working on different angles.

Example IGV Characteristic Curve
Figure 1. Example IGV Characteristic Curve

In AxSTREAM, people are able to add IGV component before the centrifugal compressor impeller which can provide different ways to edit its profile such as: Read More

Heat Balance Analysis of Thermal Energy Storage

A primary challenge of meeting the increased demand in energy is that energy supply and accessibility isn’t consistent throughout different geographical areas. Availability of energy sources is considered extremely critical in clean/renewable energy applications such as wind and solar where energy source is quite scarce and unreliable. Thermal energy storage in particular is often being looked into with the universal rise of energy demand from every part of the world. With the help of energy storage technology, it allows any excess of thermal energy to be stored and used at a later time/date where it’s needed.

Energy Storage
Source: http://www.climatetechwiki.org/sites/climatetechwiki.org/files/images/extra/storage.jpg

Thermal energy storage can be achieved with widely diverse technologies, including molten salt application. By heating the salt and storing it in insulated containers, users can pump out the salt to release the heat stored when the energy is needed. For example, with solar application the molten salt stores the excess heat that is produced during the day and releases it at night to produce electricity.
Read More

Overcoming the Use of ICEs in Hybrid Electric Vehicles with Turbomachinery – Micro-Turbine Range Extenders – Part 2

As introduced in the last blog regarding Micro-Turbine Range Extenders, we will continue the discussion of turbine engine applications in the automotive sector in this blog.

Looking to solve the problem of range anxiety in electric vehicles, many companies have started exploring the business model of recharging electric batteries in automotive vehicles with a parallel turbine engine driving a generator – coined under the term ‘micro-turbine range extender’ (or MTRE).  As seen in the turbine-powered car programs initiated in the 50s and 60s, issues with low efficiencies, slow throttle response, and capital cost of the powertrain rendered all of these programs futile shortly after their inception.  However, the revolution of electric vehicles and hybrid technologies has allowed this technology to resurface from a different direction.  With battery-driven electric motors designated as the main driver, these cars are equipped with a technology that has both energy efficient low-end torque as well as groundbreaking throttle response and many of the former drawbacks during its initial iterations are solved using an electric drivetrain.  The turbine-engine, instead of operating as the main driver, will now only operate at its most efficient power output mode and work to simply drive electricity through the generator, recharging the vehicle’s battery packs.  Acting as an isolated thermo-mechanical system, a micro-turbine range extender can be designed and optimized without having to worry about the varying duty cycles and idling that is inherent in the vehicle’s drivetrain. The thermodynamic model of a typical micro-turbine range extender can be seen below in Figure 1.

Figure 1 – Thermodynamic Formulation of a Micro-Turbine Range Extender Model in AxCYCLE™

One application within commercial vehicles that has benefitted from this technology utilizes a MTRE system developed by Wrightspeed.  The specific application lies within retrofitting refuse trucks with this electric powertrain in order to help them save an estimated $35,000 a year on fuel and maintenance costs.  In such heavy-duty applications, it is obvious that the potential for fuel cost and maintenance savings is much higher due to the large fuel burning needed for these vehicles as well as the harsh drive cycle a refuse truck goes through.  The question in the expansion of this technology generally comes in two forms: What makes the micro-gas turbine range extender a better alternative than a normal ICE hybrid option? – and – What is the viability of scaling this for consumer vehicles given the capital cost of the drivetrain?

Read More

Leakage Reduction for Efficient Machines

I just received a question from a consulting company asking for our help: “What is the effect of the gap between the rotor blades and the casing on the performance of the machine?” To answer this question you need to have the right tools and the right experience. At SoftInWay we have both and this is why our customer are satisfied by the speed and quality of our services.

To go back to the question, blade tip losses represent a major efficiency penalty in a turbine rotor. These losses are presently controlled by maintaining close tolerances on tip clearances. Tip leakage resulting by gaps between the blade tip and the casing can account for about 1/3 of the total losses in a turbine stage. The reason is mainly the offloading of the tip since the leaking fluid is not exerting a force on the blade, as well as the generation of complicated flow further downstream due to the leakage vortex.

Read More

The Simultaneous Simplicity and Complexity of Supersonic Turbines and their Modern Application

Supersonic axial turbines have attracted interest in the industry since the 1950s due to the high power they  provide, allowing a reduction in the number of low-pressure stages, and thus leading to lighter turbines as well as lower manufacturing and operational costs. Due to these valuable features, supersonic axial turbines are currently widely used in different power generation and mechanical drive fields such as rocket engine turbopumps [1, 2, 3, 4], control stages in high pressure multi-stage steam turbines, standalone single stage and 2-row velocity compound steam turbines [5, 6], ORC turbo-generator including geothermal binary power stations [7, 8, 9, 10], turbochargers for large diesel engines [11] and other applications. Therefore it is not forgotten, but instead a very important field in turbomachinery when highest specific power, compactness, low weight, low cost and ease of maintenance are dominant requirements. Especially nowadays, when development of small capacity reusable low-cost rocket launchers, compact and powerful waste heat recovery (WHR) units in the automotive industry, distributed power generation, and other fields are in extreme demand.

Meanline Results of Supersonic Turbine in AxSTREAM
Meanline Results of Supersonic Turbine in AxSTREAM

Typically, supersonic turbine consists of supersonic nozzles with a subsonic inlet and one or two rows of rotating blades. The turbine usually has partial arc admission. The total flow could go through either a single partial arc or several ones. The latter is typical for a steam turbine control stage or standalone applications. The inlet manifold or nozzles chests, as well as exhaust duct, are critical parts of the turbine as well. Due to the very frequent application of partial admission, it is not possible to implement any significant reaction degree. Thus, this kind of turbine is almost always an impulse type. However, some reaction degree could still be applied to full admission turbines. The influence of  the rotor blades profile designed for high reaction degree on rotor-stator supersonic interaction and turbine performance is not well studied at the moment.

Read More

Blade Shape Optimization

DOE in AxSTREAM
An Example of Design of Experiment Study Methods in AxSTREAM

One of the most challenging tasks during turbomachinery design is the definition of aerodynamic shape of the blades, taking into account the complicated flow phenomena and the effect that the shape will have to other disciplines of the design. The rapid increase of computational resources along with the development of CFD has led to a big interference of optimization methods and numerical simulations as part of the design process. There are two main categories in which optimization methods fall: the stochastic models and the gradient-based models. The first family of models focuses on finding the optimum design, while the second uses the gradient information to lead the optimization. Apart from the optimization algorithms, there are several techniques that help designers understand the dependence of design parameters towards others and extract meaningful information for the design. First, the design of experiment approach (DoE) consists of the design of any task that aims to describe or explain the variation of information for conditions that are hypothesized to reflect the variation. Next, we have the surrogate models that are used instead of the optimization algorithms to generate a model that is as accurate as possible while using as few simulation evaluations as possible with low computational cost. The most common surrogate models used for turbomachinery design are the Response Surface Method, the Kriging Model and the Artificial Neural Networks. Last, data mining approaches have recently become very popular as they allow engineers to look for patterns in large data sets to extract information and transform it into an understandable structure for further use.

As far as the aerodynamic design optimization methods is concerned, they can be grouped into inverse and direct designs. Inverse methods rely on definition of pressure distribution and they iterate along blade shape, changing to develop a final profile shape. The computational cost is low and such methods can be combined with an optimization method in an efficient design process. However, the biggest disadvantages lies on the fact that this approach is strongly dependent on the experience of the designer. Young engineers may fail to define a pressure distribution that performs well in design and off-design conditions. In addition, with the inverse method approach the user cannot account for geometric and mechanical constraints.

Read More

Importance of Preliminary Design for Centrifugal Compressors

prelim-design
Preliminary Design in AxSTREAM

Centrifugal compressors span a number of applications including oil compression systems, gas shift systems, HVAC, refrigeration, and turbochargers. It works by using energy from the flow to raise pressure, using gas to enter the primary suction eye (impeller). As the impeller rotates, the blades on the impeller push the gas outwards from the center to the open end of impeller to form a compression. Compressors are commonly used for combustion air supplies on cooling and drying systems. In HVAC system application, fans produce air movement to the space that is being conditioned. As a key component of an energy cycle, design/performance requirement must be met. While a design can easily be scaled from an existing design through appropriate parameters, a tailored design from scratch to confirm with design requirement for the specific cycle would give a better match and improve overall cycle performance.

There are variants of non-aerodynamic constraints in centrifugal compressor design practice, from frame size to durability and ultimately cost. An optimized impeller design should also ensure that aerodynamic problems associated with the all compressor components are minimized. With all of these (aerodynamic and non-aerodynamic) design constraints, there is no better way to optimize your compressor design than starting from the preliminary step, making sure that your compressor meets your criteria from a one dimensional basis ( a step that is often overlooked in practice).
Read More