Fatigue in Turbomachinery

This post is based on DeLuca’s publication about fatigue phenomena in gas turbines [1]. One of the most significant characteristics of a gas turbine is its durability. Especially for the aerospace industry where engines must meet not only propulsion but also safety requirements, the failure of gas turbine blades is a major concern. The “cyclic” loading of the components associated with generator excursions is one of the principal sources of degradation in turbomachinery. In addition, fatigue can be caused during the manufacturing of the components. There are three commonly recognized forms of fatigue: high cycle fatigue (HCF), low cycle fatigue (LCF) and thermal mechanical fatigue (TMF).The principal distinction between HCF and LCF is the region of the stress strain curve (Figure 1) where the repetitive application of the load (and resultant deformation or strain) is taking place.

gas-turbine-alloy
Figure 1 – The stress vs. strain curve for a typical gas turbine alloy

HCF is metal fatigue that results from cracking or fracturing generally characterized by the failure of small cracks at stress levels substantially lower than stresses associated with steady loading. HCF occurs as a result from a combination of steady stress, vibratory stress and material imperfections [2].  It is initiated by the formation of a small, often microscopic, crack. HCF is characterized by low amplitude high frequency elastic strains. An example of this would be an aerofoil subjected to repeated bending. One source of this bending occurs as a compressor or turbine blade passes behind a stator vane. When the blade emerges into the gas path it is bent by high velocity gas pressure. Changes in rotor speed change the frequency of blade loading. The excitation will, at some point, match the blade’s resonant frequency which will cause the amplitude of vibration to increase significantly.

In contrast, LCF is characterized by high amplitude low frequency plastic strains. A good example of LCF damage is of the damage which is caused by local plastic strains at the attachment surfaces between a turbine blade and the turbine disk. Most turbine blades have a variety of features like holes, interior passages, curves and notches. These features raise the local stress level to the point where plastic strains occur. Turbine blades and vanes usually have a configuration at the base referred to as a dovetail or fir tree.
In the case of thermal mechanical fatigue (present in turbine blades, vanes and other hot section components) large temperature changes result in significant thermal expansion and contraction and therefore significant strain excursions. These strains are reinforced or countered by mechanical strains associated with centrifugal loads as the engine speed changes. The combination of these events causes material degradation due to TMF.

As you can see, it is important to take into account stresses on gas turbine blades in order to determine the viability of the component. AxCFD and AxSTRESS are both vital tools that can help you quantify the stresses on your blades and make the correct decision for the choice of materials and operation conditions of the machine.

Reference:

[1] D.P.DeLuca, “Understanding fatigue”, United Technologies Pratt & Whitney;
[2] Sanford Fleeter, Chenn Zhou, Elias N. Houstin, John R. Rice, “Fatigue life prediction of turbomachine blading”, Purdue University.

One thought on “Fatigue in Turbomachinery

Leave a Reply