Gas for Power

Gas turbines are one of the most widely-used power generating technologies, getting their name by the production of hot gas during fuel combustion, rather than the fuel itself. Today, the industry is clearly driven by the need of fast and demand-oriented power generation, thus additional effort is put in extremely short installation times, low investment costs and an enormously growing volatility in the electrical distribution in order to achieve higher levels of reliability in the power grid [2].

The majority of land based gas turbines can be assigned in two groups [3]: (1) heavy frame engines and (2) aeroderivative engines. The first ones are characterized by lower pressure ratios that do not exceed 20 and tend to be physically large. By pressure ratio, we define the ratio of the compressor discharge pressure and the inlet air pressure. On the other hand, aeroderivative engines are derived from jet engines, as the name implies, and operate at very high compression ratios that usually exceed 30. In comparison to heavy frame engines, aeroderivative engines tend to be very compact and are useful where smaller power outputs are needed. Gas turbine image

Nowadays, The increase of energy demand along with the growth of transportation market led to requirements for machines of highest efficiency (i.e. minimal fuel consumption), ability to operate in some certain range of conditions, and weight restrictions. In addition, to maintain competitiveness, it is essential to decrease the amount of time needed to complete the design cycle [4]. Most of machine’s geometrical properties are selected during preliminary design phase and remain almost unchangeable throughout next design phases, predefining its layout significantly. Therefore, the preliminary design task is the basis and the effort must be put in developing complete engineering tools to cover this task taking into account all possible aspects of a successful gas turbine design. In particular, a key advancement to the future of turbine technology is the turbine cooling of components in gas turbine engines to achieve higher turbine inlet temperatures, as increased inlet temperatures lead to better performance and higher lifespan of the turbine [5].

SoftInWay has extensive experience with gas turbine design and optimization. From our flagship software platform AxSTREAM® to AxCYCLE™ , designed for the thermodynamic simulation and heat balance calculations of heat production and electric energy cycles, to our extensive engineering consultant services, you can rest assured that all your project needs will be met by our engineering experts. The use of gas turbines for generating electricity dates back to 1939, where a simple-cycle gas turbine was designed and constructed by A. B. Brown Boveri in Baden, Switzerland, and installed in the municipal power station in Neuchâtel, Switzerland [6]. Today, SoftInWay Switzerland GmbH is located not far from Baden and allows the support of our European clients by offering consulting services, software and training for all engineers tastes. Visit our website and find out how you can take advantage of SoftInWay turbomachinery expertise.

References

[1]http://www.wartsila.com/energy/learning-center/technical-comparisons/gas-turbine-for-power-generation-introduction

[2]https://library.e.abb.com/public/ccb152e5e798b1cdc1257c5f004d64c1/DEABB%201733%2012%20en_Gas%20Turbine%20Power%20Plants.pdf

[3]https://energy.gov/fe/how-gas-turbine-power-plants-work

[4]http://softinway.com/wp-content/uploads/2013/10/Integrated-Environment-for-Gas-Turbine-Preliminary-Design.pdf

[5]Joel Bretheim and Erik Bardy, “A Review of Power-Generating Turbomachines”, Grove City College, Grove City, Pennsylvania 16127

[6]https://www.asme.org/about-asme/who-we-are/engineering-history/landmarks/135-neuchatel-gas-turbine

Leave a Reply