Liquid Rocket Propulsion with SoftInWay

Preliminary Design of Fuel Turbine

Operation of most liquid-propellant rocket engines, first introduced by Robert Goddard in 1926- is simple. Initially, a fuel and an oxidizer are pumped into a combustion chamber, where they burn to create hot gases of high pressure and high speed. Next, the gases are further accelerated through a nozzle before leaving the engine. Nowadays, liquid propellant propulsion systems still form the back-bone of the majority of space rockets allowing humanity to expand its presence into space. However, one of the big problems in a liquid-propellant rocket engine is cooling the combustion chamber and nozzle, so the cryogenic liquids are first circulated around the super-heated parts to bring the temperature down.

Rotordynamics analysis
Rotordynamics Analysis

Because of the high pressure in the combustion chamber needed to accelerate the hot gas mixture, a feed system is essential to pressurise and to transport the propellant from the propellant tank(s) to the thrust chamber. In today’s rocket engines, propellant pressurization is accomplished by either (turbo)-pumps or by a high pressure gas that is released into the propellant tank(s), thereby forcing the propellants out of the tank(s). In space engineering, especially for high total impulse, short duration launcher missions, the choice is almost exclusively for pump-fed systems.

To design such systems, a highly sophisticated and complete tool is required. SoftInWay has developed AxSTREAM, the most integrated engineering platform in the market, for turbomachinery design, analysis and optimization. The long experience in the field along with the use of AxSTREAM allow SoftInWay to support its customers in the space industry. Below, you can catch a glimpse at AxSTREAM’s capabilities through a demonstration project of the RL10-A3-3 fed system. The RL10-A3-3 rocket engine is a regeneratively cooled, turbopump fed engine with a single chamber and a rated thrust of 15,000 lb at an altitude of 200,000 ft., and a nominal specific impulse of 444 sec. Propellants are liquid oxygen and liquid hydrogen injected at a nominal oxidizer-to-fuel ratio of 5:1 [1]. The design focused creating new rotating parts of the RL10-A3-3 feed system as presented in Figures 1 and 2, including full scope of rotordynamics analysis.

New Rotating Parts for RL10-A3-3 Feed System

Contact us for an AxSTREAM demonstration and attend one of our training courses to get a trial with AxSTREAM and become SoftInWay’s next success story.

References

[1]https://pslhistory.grc.nasa.gov/PSL_Assets/History/C%20Rockets/Design%20Report%20for%20RL-10-A-3-3.pdf

Leave a Reply