The Economic Optimization of Renewable Energy

Global warming has been a very popular topic these days. With up-trend of clean technology and realization that strict climate policy should be implemented, demand of renewable energy sky-rocketed as conservative plants popularity falls. Number of coal power plants have significantly dropped since its peak era, being known as the largest pollutant contributor as it produces nitrogen oxide and carbon dioxide, the technology is valued less due to its impact on nature. Renewable energy comes from many sources: hydropower, wind power, geothermal energy, bio energy and many more. The ability to replenish and having no limit in usage and applications make renewable energy implementations seems attractive. Aside from that, they also produce low emission, sounds like a win-win solution for everyone. Theoretically, with the usage of renewable energy, human-kind should be able to meet their energy need with minimal environmental damage. With growth rate ranging from 10% to 60% annually, renewable energy are getting cheaper through the technology improvements as well as market competition. In the end, the main goal is still to generate profit, though these days taking impact on nature into the equation is just as important. Since the technology is relatively new, capital cost still considerable higher compared to some cases with more traditional (–and naturally harmful) implementations. So the question is: how to maximize the economic potential of a renewable energy power generation plant?

The Economic Optimization of Renewable Energy

Living up to the maximum potential of any power generation plant starts in the design process. Few examples for solar power plant: designers should take into consideration type and quality of panels, it’s important to see the economic-efficiency tradeoff before jumping into investment; looking into the power conversion is also one of the most important steps, one should take into consideration that it would be worthless to produce more energy than the capacity that are able to be transferred and put to use, though too low energy generation would mean less gross income.

Another example, for a geothermal power plant, many studies have shown that boundary conditions on each components play a big role in determining the plant’s capacity and efficiency. High efficiency is definitely desired to optimize the potential of a power plant and minimized the energy loss. Though, should also be compared to the economic sacrifice; regardless of how good the technology is, if it doesn’t make any economic profit, it would not make sense for one to invest in such technology. Low capital cost but high operating expenses would hurt the economic feasibility in the long run, whereas high capital cost and low operating expense could still be risky since that would mean a higher lump sum of investment upfront, which might or may not breakeven nor profitable depending on the fluctuation of energy market.

Modern technology allows investors and the engineering team to make this prediction based on models developed by the experts. SoftInWay just recently launched our economic module, check out AxCYCLE to optimize your power plant!

Reference:

[1] Optimal design of geothermal power plants 

[2] Strategies in tower solar power plant optimization

Explaining the Binary Power Cycle

Geothermal energy is known to be a reliable and sustainable energy source. As the world gives more attention to the state of the environment, people lean towards using more energy sources which have little to no impact on nature. Where it is true that currently no other energy source can outperform fossil fuel due to its energy concentration, geothermal energy is a good prospect as a temporary substitute until a better form of energy supply is found.

There are two types of geothermal power sources; one is known as the steam plant and the other is the Binary cycle. Binary cycles have the conceptual objectives of: high efficiency — minimizing losses; low cost to optimize component design; and critical choice of working fluid. This particular type of cycle allows cooler geothermal supply to be used, which has a huge benefit since lower temperature resources are much more common in nature.

blog - binary power1blog - binary power2

 

 

 

 

 

 

The way a binary cycle works can be explained using the diagram shown above. Since the temperature of geothermal source is not high enough to produce steam, hot water is fed into a heat exchanger. From there, secondary liquid with lower boiling water than water i.e. isobutane, absorbs the heat generated. As the steam of secondary liquid moves the turbine, electricity will then be produced. This whole process repeats in a cycle since the secondary fluid will then condense back to its liquid state and being used for the same process.

From the process described above, it can be seen that binary cycle is a self-contained cycle — ‘nothing’ goes to waste. This fact leads to the potential of having low producing cost energy source from binary power cycle. That being said, due to the lower temperature, the conversion efficiency of the geothermal heat is also considerably low. Consequently, Carnot efficiency of such process is lower than most power cycles. Large amount of heat is required to operate a binary cycle, leading to a better and larger equipment. Not only that since a bigger amount of heat energy has to be let out to the environment during the cycle, a sufficient cooling system must be installed. Although the production cost is found to be lower, the investment cost for installation would be very expensive. Then, the main question to this particular technology implementation would be how to improve the quality of production and economic feasibility?

First, one of the main aspect of binary power cycle is to overcome water imperfection as a main fluid. Consequently choosing optimal working fluid is a very essential step. Characteristic of optimal working fluids would include a high critical temperature and maximum pressure, lower triple-point temperature, sufficient condenser pressure, high vaporization enthalpy, and other properties.

Second, it was studied on multiple different events that well-optimized ORCs perform better than Kalina cycles. The type of components chosen in the cycle also affect the cycle performance quite substantially, i.e plate heat exchanger was found to perform better in an ORC cycle in the geothermal binary application compared to shell-and-tube. Addition of recuperator or turbine bleeding also have the potency to improve the overall performance of a binary cycle plant. It is important to model multiple thermodynamic cycle to make sure that the chosen one is the most optimized based on the boundary conditions. While designing ranges of thermodynamic cycles, it is common that the cycle is modeled based on ideal assumptions. For binary cycle in geothermal application, plant efficiency would be the most important parameter. In order to achieve a desired plant efficiency, both cycle efficiency and plant effectiveness should be maximized.

Additionally, pinch-point-temperature between condenser and heat exchanger is a substantial aspect to pay attention to, even the smallest change of in temperature is considered a significant change. Thus, including this parameter is a very important aspect.

This particular cycle has many potentials which haven’t been explored. Enhance the advantages of your binary power cycle using our thermodynamic tool, AxCYCLE.

Ref:
https://en.wikipedia.org/wiki/Binary_cycle
http://www.technologystudent.com/energy1/geo3.htm
http://www.researchgate.net/publication/229148932_Optimized_geothermal_binary_power_cycles

New Release: AxCYCLE v. 4.0

We have just released the newest version of AxCYCLE, our software tool for thermodynamic cycle design and analysis. AxCYCLE 4.0 has some brand new features that will inevitably aid you in designing optimal Gas, Steam, Combined, Turbocharger, Supercritical CO2, Organic Rankine, and Waste Heat Recovery Cycles.

Take a look at the latest updates and additions:

Turbine Efficiency Calculation
In previous versions of AxCYCLE, efficiency was an input parameter that needed to be changed manually for each off-design condition. The Calculated Efficiency option will automatically recalculate the efficiency for off-design conditions.

blog - axcycle 4.0

New Components
Several new components were added to the AxCYCLE library for more sophisticated and customizable cycles.

Bearing: Used to simulate mechanical energy losses in bearings. The estimated mechanical losses are assigned as a power value and are accounted for in the total energy balance

Gearbox: Used to simulate the mechanical energy transfer between two shafts considering mechanical energy losses in the gearbox. These losses are measured using a gearbox efficiency value.

End Seal: Used to simulate seal leakage. The value of the leakage depends on the difference between the upstream and downstream pressure.

Steam Cycle Builder
AxCYCLE’s new wizard for the creation of basic steam cycles. It can be used for steam cycles with regenerative heating, optional moisture separators, and re-heaters. The Builder creates a cycle diagram with the correct fixed conditions and initial values, meaning the generated cycle is ready for calculation! It does all of the work for you!

Learn more about AxSTREAM and AxCYCLE on our website, or email us at info@softinway.com to find out exactly how we can help with your next turbomachinery project.

SoftInWay April Events and Why You Should Attend

supercriticalco2inaxcycleMarch just really flew by!

We’re kicking off April with our new Heat Balance Calculation with AxCYCLE online classes this month. Here’s three good reasons you should attend:

1. You’ll get to learn, understand and dive into our new conceptual cycle analysis tool that has built-in customizable OEM turbine and ICE libraries (perfect for engineers involved in waste heat recovery) Continue reading “SoftInWay April Events and Why You Should Attend”

New Waste Heat Recovery Features in AxCYCLE Available Now

AxCYCLE IC engine
AxCYCLE IC engine

Have you checked out AxCYCLE recently?

SoftInWay officially announced the latest features with the release of version 2.3.

With this update, the system’s new tools are available to all users, but waste heat recovery application engineers, particularly in the automotive industry, should take notice. Continue reading “New Waste Heat Recovery Features in AxCYCLE Available Now”