Explaining the Binary Power Cycle

Geothermal energy is known to be a reliable and sustainable energy source. As the world gives more attention to the state of the environment, people lean towards using more energy sources which have little to no impact on nature. Where it is true that currently no other energy source can outperform fossil fuel due to its energy concentration, geothermal energy is a good prospect as a temporary substitute until a better form of energy supply is found.

There are two types of geothermal power sources; one is known as the steam plant and the other is the Binary cycle. Binary cycles have the conceptual objectives of: high efficiency — minimizing losses; low cost to optimize component design; and critical choice of working fluid. This particular type of cycle allows cooler geothermal supply to be used, which has a huge benefit since lower temperature resources are much more common in nature.

blog - binary power1blog - binary power2

 

 

 

 

 

 

The way a binary cycle works can be explained using the diagram shown above. Since the temperature of geothermal source is not high enough to produce steam, hot water is fed into a heat exchanger. From there, secondary liquid with lower boiling water than water i.e. isobutane, absorbs the heat generated. As the steam of secondary liquid moves the turbine, electricity will then be produced. This whole process repeats in a cycle since the secondary fluid will then condense back to its liquid state and being used for the same process.

From the process described above, it can be seen that binary cycle is a self-contained cycle — ‘nothing’ goes to waste. This fact leads to the potential of having low producing cost energy source from binary power cycle. That being said, due to the lower temperature, the conversion efficiency of the geothermal heat is also considerably low. Consequently, Carnot efficiency of such process is lower than most power cycles. Large amount of heat is required to operate a binary cycle, leading to a better and larger equipment. Not only that since a bigger amount of heat energy has to be let out to the environment during the cycle, a sufficient cooling system must be installed. Although the production cost is found to be lower, the investment cost for installation would be very expensive. Then, the main question to this particular technology implementation would be how to improve the quality of production and economic feasibility?

First, one of the main aspect of binary power cycle is to overcome water imperfection as a main fluid. Consequently choosing optimal working fluid is a very essential step. Characteristic of optimal working fluids would include a high critical temperature and maximum pressure, lower triple-point temperature, sufficient condenser pressure, high vaporization enthalpy, and other properties.

Second, it was studied on multiple different events that well-optimized ORCs perform better than Kalina cycles. The type of components chosen in the cycle also affect the cycle performance quite substantially, i.e plate heat exchanger was found to perform better in an ORC cycle in the geothermal binary application compared to shell-and-tube. Addition of recuperator or turbine bleeding also have the potency to improve the overall performance of a binary cycle plant. It is important to model multiple thermodynamic cycle to make sure that the chosen one is the most optimized based on the boundary conditions. While designing ranges of thermodynamic cycles, it is common that the cycle is modeled based on ideal assumptions. For binary cycle in geothermal application, plant efficiency would be the most important parameter. In order to achieve a desired plant efficiency, both cycle efficiency and plant effectiveness should be maximized.

Additionally, pinch-point-temperature between condenser and heat exchanger is a substantial aspect to pay attention to, even the smallest change of in temperature is considered a significant change. Thus, including this parameter is a very important aspect.

This particular cycle has many potentials which haven’t been explored. Enhance the advantages of your binary power cycle using our thermodynamic tool, AxCYCLE.

Ref:
https://en.wikipedia.org/wiki/Binary_cycle
http://www.technologystudent.com/energy1/geo3.htm
http://www.researchgate.net/publication/229148932_Optimized_geothermal_binary_power_cycles

Throwback Thursday Webinar – Green Energy and ORC

It’s #ThrowbackThursday and we’re sharing one of our past webinars called “Green Energy – Turbomachinery for Organic Rankine Cycles.”iStock_000015544357Medium

Growing global demand for energy coupled with environmental concerns from the prevalence of fossil fuel usage has created a strong demand for new sources of clean energy. This demand has inspired scientists and engineers to search for and propose new solutions to generate greener, cleaner energy. One of the new methodologies which has been proposed is generating electricity from low temperature heat sources, the Organic Rankine Cycle being among the most widely used. Such popularity encouraged innovation in the area, and inspiring various design modifications in conjunction with low temperature heat sources and with a wide range of power rates. Continue reading “Throwback Thursday Webinar – Green Energy and ORC”

Sustainable Turbomachinery

iStock_000015544357MediumThis past Tuesday was the 44th celebrated Earth Day. On Earth Day, more than 100 countries join together to literally stop and smell the roses, appreciate the splendor and beauty of Mother Nature and take extra efforts to be more conscientious for our shared home.

Turbomachinery, though not always the first thing that comes to mind when speaking on the subject of green technology, plays an important role toward our efforts for a more sustainable environment.
Continue reading “Sustainable Turbomachinery”