Upcoming Webinar: Design of Waste Heat Recovery Systems Based on Supercritical ORC for Powerful Engines

C836150Our next webinar is on October 8th! Join us as we discuss Design of Waste Heat Recovery Systems Based on Supercritical ORC for Powerful Engines.

Waste heat recovery is a hot topic (pun intended) that SoftInWay embraced rapidly. Numerous projects have been successfully performed on both the thermodynamic and the turbomachinery components levels.

In this webinar, we will discuss the case of a powerful ICE that can now benefit from a 20% boost in power due to waste heat recovery using a supercritical organic Rankine cycle (SORC). Different configurations, levels of complexity and parameters are studied and compared for the thermodynamic cycle as well as different fluid. Moreover, to show you that SORC is the way to go the results obtained are compared to what would be obtained with a different type of WHR system; double-pressure water steam cycle.

The session will include:

  • Introduction to the powerful ICE considered and its waste heat sources
  • Working fluid and parameters selection for the waste heat recovery system (WHRS)
  • Comparison of different configurations of WHRS SORC
  • Preliminary design of the turbine(s)

Who should attend?​

  • Engineers actively contributing to making their processes more efficient.
  • Engineers working in the mechanical, aerospace, automotive, marine, power generation industries who want to optimize their process equipment by utilizing untapped heat.
  • Engineering students looking for a comprehensive and state-of-the-art case study to optimize existing equipment allowing them to widen and deepen their understanding of waste heat recovery to meet the requirements of future employers.
Register

Innovative Boost of Larger Internal Combustion Engines

The last few decades have brought with them a dramatic increase in the development and use of turbochargers in automobiles, trains, boats, ships, and aircrafts. There are several reasons for this growth, including rising demand for fuel efficiency, stricter regulations on emissions, and advancements in turbomachinery design. Turbochargers are appearing more and more and are replacing superchargers.

turbocharger
Turbocharger

 

Turbochargers are not the only turbomachinery technology growing in popularity in the marine, automobile, and railroad industries. Organic Rankine Cycles are being applied to take advantage of the exhaust gas energy and boost engine power output. ORCs, a system for Waste Heat Recovery, improve the overall efficiency of the vehicle, train, or boat, and reduce specific emissions.

As the size of the engines we consider increases, there is more heat available to recuperate, and more potential WHR systems to use. For instance, we can consider different combinations of these systems with both non-turbocharged and turbocharged engines. We are able to design and compare engine boost system combinations, with and without a turbocharger, with and without a blowdown turbine, and with and without a WHR system, at the cycle and turbine design levels.

In our upcoming webinar, we will do just that. We will design different combinations for larger ICEs and compare the results. This webinar will also cover introductions to these systems and application examples for supplementary power production systems in the automotive and marine industries.

We hope you can attend! Register by following the link below.

Register

 

Power Production Does Not Have To Be So Wasteful

Whether it’s to drive you to work, power up your electronic devices, fly you to your holiday destination (extraterrestrial or not), or even set up the perfect lighting for this Valentine’s Day, your daily life requires power production. Although renewable energies are gaining popularity, many people remain unprepared to make the complete switch to these innovative power sources (except Iceland). Making the things we have more “energy efficient” or “green” has become an attractive marketing tool for many of businesses.

Presentation of the boundary conditions, unrecuperated and recuperated waste heat recovery cycles in AxCYCLE™
Presentation of the boundary conditions, unrecuperated and recuperated waste heat recovery cycles in AxCYCLE™

Continue reading “Power Production Does Not Have To Be So Wasteful”

Formula 1 Racing is Turbocharged

turbochargerinengineYes, the Formula 1 races have begun. The world is three races in with the fourth Grand Prix scheduled for April 20 in China.  As the world watches in awe at the versatility and speed (let’s face it, the races are all about the cars, right?), engineers marvel at the aerodynamics, energy recovery systems, turbochargers and internal combustion engines (because we love engineering).

Continue reading “Formula 1 Racing is Turbocharged”

New Waste Heat Recovery Features in AxCYCLE Available Now

AxCYCLE IC engine
AxCYCLE IC engine

Have you checked out AxCYCLE recently?

SoftInWay officially announced the latest features with the release of version 2.3.

With this update, the system’s new tools are available to all users, but waste heat recovery application engineers, particularly in the automotive industry, should take notice. Continue reading “New Waste Heat Recovery Features in AxCYCLE Available Now”

A Common Debate: Axial or Radial Turbine?

Comparison of efficiency against power output for axial flow and radial inflow turbine configuration
Comparison of efficiency against power output for axial flow and radial inflow turbine configuration

The question always remains, which is better: axial or radial? But with that question are sub questions: Which application? Which fluid? What results are you looking for exactly?

In automobiles for waste heat recovery, we believe that radial inflow turbines are more suited for use. Here’s why:

Continue reading “A Common Debate: Axial or Radial Turbine?”