Turbomachinery Rotor Dynamics – Latest Modelling & Simulation CAE for Design and Analysis, using SoftInWay’s Integrated Tool

The Rotor-Dynamic System of a typical turbomachine consists of rotors, bearings and support structures. The aim of the designer undertaking analysis is to understand the dynamics of the rotating component and its implication. Today the industry practices and specifications rely heavily on the accuracy of rotor-dynamic simulated predictions to progressively reduce empirical iterations and save valuable time (as repeated direct measurements are always not feasible). Be it a centrifugal pump or compressor, steam or gas turbine, motor or generator, the lateral rotor-dynamic behavior is the most critical aspect in determining the reliability and operability. Such analytical predictions are often tackled using computer models and accuracy in representing the physical system is of paramount importance.  Prior to analysis it is necessary to create a detailed model, and hence element such as cylindrical, conical , inner bore fillet/chamfer, groove/jut, disk / blade root and shroud, copy/mirror option, bearing element and position definition are built. Stations (rather than nodes) having six DOF (degrees of freedom) are used to model rotor-dynamic systems. Typically for lateral critical analysis each station has four DOF, two each translational and rotational (angular). Decoupled analysis followed by coupled lateral, torsional and axial vibration makes prediction realistic and comprehensive. The mathematical model has four essential components, i.e. rotating shafts with distributed mass and elasticity, disks, bearing and inevitable synchronous imbalance excitation. Components such as impellers, wheels, collars, balance rings, couplings – short axial length and large diameter either keyed or integral on shaft are best modelled as lumped mass. Bearings, dampers, seals, supports, and fluid-induced forces can be simulated with their respective characteristics. Bearing forces are linearized using dynamic stiffness and damping coefficients and together with foundation complete the bearing model. The governing equation of motion for MDOF system require  determination of roots (Eigenvalue) and Eigen Vectors. Lateral analyses – such as static deflection and bearing loads, critical speed analysis, critical speed map, unbalance response analysis, whirl speed and stability analysis, torsional modal and time transient analyses are then performed.

Aashish blog 1 image

Indeed rotor-dynamic modelling with practical experience and engineering judgement improves accuracy.  Its ability to model complexities such as flexible supports, foundation, rotor seal interaction, and instabilities while making the CAE model comprehensive, user friendly, and fully integrated with other well proven and mature suites for flow path and  blade design makes SofInWay’s software platform unique.

Integrated Approach within AxSTREAM® Platform

Suited to meet the diverse needs of designers, analysts and users of turbomachinery, SoftInWay’s webinar in collaboration with Test Devices Inc scheduled on Mar 2, 2017, 10 AM EST helps you to understand HOW rather than why. It will  cover rotor and bearing types, principles of an integrated approach to rotor-dynamics system design and simulation, purpose and procedures for rotor-dynamic and structural analysis. The software demonstration will include modelling features, import/export options, lateral and torsional capabilities, bearing analyses and modelling capabilities, and case studies. It will also briefly highlight fundamentals such as characteristic influence of shaft rotational on natural frequencies in comparison to classical natural frequencies and modes in structures, gyroscopic effects, rigid vs flexible rotors, free and forced vibration as applicable to turbomachine rotors, impact of bearing characteristics and concept of cross coupling, modes, Campbell diagram, stead and transient response, instabilities, condition monitoring, testing, evaluation and acceptance criteria (log dec and margins) and much more. Testing methods covered by Tech Devices Inc. highlight testing procedures and methods for design validation and building confidence that the design exceeds expectations.

 

Leave a Reply

Your email address will not be published. Required fields are marked *