Everyone is familiar with pumps, but how many people really think about how much depends on this ubiquitous invention? The scope of pump applications is wide: distribution and circulation of water in water supply and heat supply systems, irrigation in agriculture, in the oil industry, in fire extinguishing systems, etc.
A pump is a hydraulic machine designed to move fluid and impart energy to it. A schematic diagram of a simple pumping unit is presented below.

1 – intake valve; 2 – suction pipeline; 3 – vacuum gauge; 4 – pump; 5 – manometer; 6 – check valve; 7 – gate valve; 8 – pressure pipeline
Positive Displacement and Dynamic Pumps
According to the principle of operation, pumps can be divided into two main groups: positive displacement and dynamic. In positive displacement pumps, a certain volume of the pumped liquid is cut off and moved from the inlet to the pressure head, where additional energy is supplied to it. In pumps with dynamic action, the increase in energy occurs due to the interaction of the liquid with a rotating working body.
The most widely used pumps are centrifugal pumps which are of the dynamic type. The principle of centrifugal pumps uses a rotating impeller to create a vacuum in order to move the fluid. The impeller rotates within the housing and reduces pressure at the inlet. This motion then drives fluid to the outside of the pump’s housing, which increases the pressure.
These pumps benefit from a simple design and lower maintenance requirements and costs. This makes them suited to applications where the pump is used often or continuously run.


In most cases, the pumps are electrically driven, but if the pump is of high power and high speed, then these pumps are driven by steam turbines. Read More