When to Use 1D Vs. 3D Simulation

Today’s simulation and analysis (S&A) tools allow engineers to study and verify system/machine properties and visualize the aerodynamic, thermodynamic, structural, and other physical properties without having to build a physical prototype. We can perform cooling secondary flow systems analysis in a gas turbine; a detailed performance study for a supercritical CO2 turbine/compressor; predict cavitation for industry a water pump/rocket turbopump; and so many more. Products and machines are becoming more and more complex. Unfortunately, engineers only run a handful of designs through the S&A process, due to the cost associated with limited computer resources and the time required to run simulations and to create complex 3D models of designs. Furthermore, verification and certification of system designs are often done using actual hardware—a costly and time-consuming endeavor. Considering these aspects, 1D and 3D simulations are significantly important. However, engineers need to determine the trade-off between 1D and 3D simulation.

AxSTREAM and STAR-CCM
Figure 1 AxSTREAM Platform with Modules from 0D to 3D including seamless geometry import into STAR-CCM+

1D Simulation

Imagine what’s required to generate one 3D design for a gas turbine secondary cooling flow system, and multiply it by 1,000 design alternatives. Even if we were to only use conceptual CAD models, this project would require extraordinary computing power and data storage—not to mention simulation and design expertise.

And so, even with the movement to bring more cloud-based S&A tools to market, resources required for 3D modeling will still result in very few designs being extensively explored, thanks to their complexity. Detailed low-dimensional models of system behavior can provide valuable insights into system performance and function thus guiding the design process. Read More

Notable Military Jet Engines

As a special tribute this Veterans Day, we decided to have a look at some of the most notable engines that have been used to propel military vehicles throughout history.

PW F135

Kicking off our list is the Pratt & Whitney 135 turbofan engine. The pride and joy of Pratt & Whitney’s military engine lineup, the 135 powers the US Military’s F35 Lightning II. Presently, two variants of the F135 are used in several different variants of the F35, although it should be noted that the F135 was developed specifically for the F35. The 3 engine variants are known as the F135-PW-100, the F135-PW-600, and the F135-PW-400, each for a different application of the F35. The 100 variant is used in the conventional take off and landing F35A, the 600 is used in the F135B for short take off and vertical landing F35B, and the 400 uses salt corrosion-resistant materials for the Naval variant F35C.

A Lockheed Martin F35A in fight, and an F35C taking off from the USS Abraham Lincoln

The F135 is capable of 28,000 lbf of thrust with the afterburner capability pushing thrust all the way to a whopping 43,000 lbf of thrust, making the Lightning II a supersonic STOVL aircraft suited to a wide variety of applications, as seen in the above illustrations. At the heart of the Pratt F135 are 3 fan stages, 6 compressor stages, and 3 turbine stages. In the STOVL variant, the F135-600 uses the same core components, but is also coupled to a drive shaft which connects the engine to the lift fans which were originally developed by Rolls-Royce, and give the Lightning the ability to hover, perform short distance takeoffs, and vertical landings.

A Royal Air Force RAF F35B Lightning II performing a vertical landing on a Royal Navy carrier.
A Royal Air Force RAF F35B Lightning II performing a vertical landing on a Royal Navy carrier.

The F35 by Pratt & Whitney and in turn the F35 Lightning II by Lockheed Martin represent the cutting edge in military aviation, and are the centerpieces of Pratt and Lockheed respectively. The Lightning variants and this line of turbofan engines will be in service with several branches of the US military and its allies around the world for the foreseeable future, with more iterations of the F135 to come. Read More

Modeling and Analysis of a Submarine’s Diesel Engine Lubrication System

Even in today’s age of underwater nuclear power, the majority of the world’s submarines still use diesel engines as their main source of mechanical power, as they have done since the turn of the century. A diesel engine must operate at its optimum performance to ensure a long and reliable life of engine components and to achieve peak efficiency. To operate or keep running a diesel engine at its optimum performance, the correct lubrication is required. General motors V16-278A type engine is normally found on fleet type submarines and is shown in Figure 1. This engine has two banks of 8 cylinders, each arranged in a V-design with 40 degree between banks. It is rated at 1600 bhp at 750 rpm and equipped with mechanical or solid type injection and has a uniform valve and port system of scavenging[1].

Figure 1. GM V16-278A, Submarine Diesel Engine. SOURCE: [1]
Figure 1. GM V16-278A, Submarine Diesel Engine. SOURCE: [1]
Lubrication system failure is the most expensive and frequent cause of damage, followed by incorrect maintenance and poor fuel management. Improper lubrication oil management combined with abrasive particle contamination cause the majority of damage. Therefore, an efficient lubrication system is essential to minimize risk of engine damage.

The purpose of an efficient lubrication system in a submarine’s diesel engine is to:

  1. Prevent metal to metal contact between moving parts in the engine;
  2. Aid in engine cooling by removing heat generated due to friction;
  3. Form a seal between the piston rings and the cylinder walls; and
  4. Aid in keeping the inside of the engine free of any debris or impurities which are introduced during engine operation.

­
All of these requirements should be met for an efficient lubrication system. To achieve this, the necessary amount of lubricant oil flow rate with appropriate pressure should circulate throughout the entire system, which includes each component such as bearings, gears,  piston cooling, and lubrication. If the required amount of flow rate does not flow or circulate properly to each corner of the system or rotating components, then cavitation will occur due to adverse pressure and excessive heat will be generated due to less mass flow rate. This will lead to major damage of engine components and reduced lifetime.
Read More

APPLICATION OF DIGITAL TWIN CONCEPT FOR SUPERCRITICAL CO2 OFF-DESIGN PERFORMANCE AND OPERATION ANALYSES

This is an excerpt from a technical paper, presented at the ASME Turbo Expo 2020 online conference and written by Leonid Moroz, Maksym Burlaka, Tishun Zhang, and Olga Altukhova. Follow the link at the end of the post to read the full study! 

Introduction

The attempts to simulate transient and steady-state sCO2 cycles off-design performance were performed by numerous authors [1], [2], [3], [4], and [5]. Some of them studied the dynamic behavior of regulators, some studied different control strategies or off-design behavior in different scenarios, which definitely has certain utility in the development of the reliable technology of sCO2 cycle simulation. Nevertheless, they used rather simplified models of components, especially turbomachinery and heat exchangers, which are of crucial importance to correctly simulate cycle performance.

The authors of this paper attempted to apply the digital twin concept to a simulation of off-design and part-load modes of the sCO2 bottoming cycle considering real machine characteristics and performance, which nobody tried to apply in this area.

On IGTC Japan 2015, SoftInWay Inc. has published a paper “Evaluation of Gas Turbine Exhaust Heat Recovery Utilizing Composite Supercritical CO2 Cycle”. The paper considered combinations of different bottoming sCO2 cycles for a specific middle power gas turbine. It mainly studied the advantages of different types of sCO2 cycles to increase the power production utilizing GTU waste heat.

The present paper is a further study based on that so the Cycle 2 [6] from that previous paper was selected as the sCO2 bottoming PGU layout in the present paper for subsequent analysis. The cycle is a combination of recompression cycle and simple cycle which offers 16.13 MW as output. GE LM6000-PH DLE gas turbine, was used as the heat source for bottoming PGU. According to GE official brochure [7], the GE LM6000 offers 40 MW to over 50 MW with up to 42% efficiency and 99% fleet reliability in a flexible, compact package design for utility, industrial and oil and gas applications. GE LM6000-PH DLE provides 53.26 MW output with exhaust temperature at 471 ℃ and exhaust flow at 138.8 kg/s. (This information came from GE products specification from 2015. It appears that GE continuously modifying the parameters of its turbines along with the naming of different modifications. Therefore, today’s parameters and configuration names might be slightly different comparing to 2015) Exhaust gas pressure was assumed to be 0.15 MPa. These parameters were taken to analyze the bottoming PGU and are presented below in TABLE 1.

SELECTED SET OF GE LM6000-PH DLE PARAMETERS
TABLE 1: SELECTED SET OF GE LM6000-PH DLE PARAMETERS

The digital twin (DT) concept is the developing technology that allows simulation of object behavior during its life cycle or in specified time due to changing ambient conditions, for example. The DT is applicable for performance tuning, digital machine building, healthcare, smart cities, etc [8] that allows decreasing the time and costs of development and optimize the object on the developing stage. GE has raised DT concepts for power plants to continually improves its ability to model and track the state of the plants [9].

In the context of this paper, DT is a simulation system comprised of physicist-based models organized in a special algorithmic structure that allows simulating the behavior of sCO2 PGU under alternating ambient conditions and grid demands.

The DT in this study was created utilizing AxSTREAM® Platform, which includes multiple software tools. The following software tools were utilized in this study: AxCYCLE™ was used to perform cycle thermodynamic calculation; solution generator in AxSTREAM® helped with finding possible machine geometry with given boundary conditions when performing preliminary design for compressors and turbines at design point; parameters and performance of turbomachinery including mass flow rate, pressure, power, efficiencies, etc. were calculated by Meanline/Streamline solver in AxSTREAM® for design and off-design conditions; AxSTREAM NET™ is a 1D system modeling solver and it was introduced here to simulate performance of heat exchangers (HEX) and pressure drop in the pipes involved in the cycle; AxSTREAM ION™ was used to integrate all modules and tools together in one simulation system. Read More

Initial Sizing of Centrifugal Fans

Centrifugal fans are a type of turbomachine equipment widely used in all kinds of modern and domestic life. Centrifugal fans were developed as highly efficient machines, and the design is still based on various empirical and semi empirical rules proposed by fan designers. Due to these various rules, there are different methodologies used to design impellers and other components.

Centrifugal fans consist of an impeller in a casing with a spirally shaped contour, shown in Figure 1 (left side). The air enters the impeller in an axial direction and is discharged at the impeller outer periphery. The air flow moves along the centrifugal direction (or radial direction). Centrifugal fans can generate relatively high pressures, as compared with axial flow fans. For axial flow fans, the pressure rise is small, about be few inches of water.

Radial Fan and Static Pressure
Figure 1 Radial Fan and Static Pressure, Shaft Power V/s Volume Flow Curves for Different
Types of Blades

Generally centrifugal fans have three types of blade: forward blade, backward blade and radial blade. The characteristic curve of these three kinds of centrifugal fans is shown on right side in Figure 1.

Sizing Using Cordier Diagram

Centrifugal fans (most turbomachines) can be classified based on specific speed (Ns) and specific diameters (Ds) as shown in Figure 2. Specific speed is a criterion at which a fan of unspecified diameter would run to give unit volume flow and pressure. The correlation for specific speed and specific diameter can be seen here:

Pump Formula

where, ‘N’ is rotational speed (RPM), ‘Q’ is flow rate (ft3/sec), ‘H’ is head (ft), ‘D’ is diameter (ft) Read More

Hydrogen Energy: History, Applications, and Future Developments

A Brief History Of The Discovery Of Hydrogen 

The release of combustible gas during the interaction of metals and acids was observed as early as the 16th century. That is, during the formation of chemistry as a science. The famous English scientist Henry Cavendish had studied the substance since 1766, and gave it the name “combustible air”. When burned, this gas produced water. Unfortunately, the scientist’s adherence to the theory of phlogiston (the theory that suggested the existence of a fire-type element in materials) prevented him from coming to the correct conclusions.

Henry Cavendish (1731 – 1810)
Henry Cavendish (1731 – 1810) Source: https://www.butterflyfields.com/henry-cavendish-contributions-in-science/

In 1783 the French chemist and naturalist A. Lavoisier, together with the engineer J. Meunier, and with the help of special gas meters carried out the synthesis of water, and then its analysis by means of decomposition of water vapor with hot iron. Thus, scientists were able to come to the correct conclusions, and dismantle the phlogiston theory. They found that “combustible air” is not only a part of water but can also be obtained from it. In 1787, Lavoisier put forward the assumption that the gas under study is a simple substance and, accordingly, belongs to the number of primary chemical elements. He named it hydrogene (from the Greek words hydor – water + gennao – I give birth), that is, “giving birth to water”.

Antoine-Laurent
Antoine-Laurent
de Lavoisier (1743 – 1794). Source: https://educalingo.com/en/dic-en/lavoisier

A Little About The Properties Of Hydrogen 

In a free state and under normal conditions, hydrogen is a gas, and is colorless, odorless and tasteless. Hydrogen has almost 14.5 times mass less than air. It usually exists in combination with other elements, such as oxygen in water, carbon in methane, and organic compounds. Because hydrogen is chemically extremely active, it is rarely present as an unbound element. Read More

The Top 5 Coolest Turbomachinery Inventions (According to Us!)

As the leading authority on turbomachinery design, redesign, analysis, and optimization, we work with a wide range of machines from small water pumps and blowers to massive steam turbines, jet engines, and liquid rocket engines. While all of these machines have a certain “cool factor” to them since, after all, we’ve proven they make the world go round; some machines take coolness to the next level. Today, we’re taking a look at 5 of the coolest specific turbomachinery inventions, according to us.

Number 5 – The Arabelle Turbines

Starting with number 5, we have a pair of steam turbines, each known as “Arabelle”. You may be asking yourself “So what, steam turbines are everywhere.” You would be right, but these two have a bit of a size advantage. In fact, they’re the largest steam turbines in the world.

Designed and built by General Electric in France, these turbines are, according to GE, “longer than an Airbus 380 and taller than the average man. A pair of them, each capable of producing 1770 megawatts, is now set to cross the English Channel to provide energy for generations” (1).

They’ll be installed in a new nuclear power plant known as Hinkley Point C in Somerset. Their 1.7 gigawatt output will be enough to power 6 million homes, which is 7% of the UK’s power consumption. (1) The output and sheer size of the turbines aren’t the only large number either, the project costs nearly 24 billion US dollars.

A CAD model of the Arabelle steam turbines, image courtesy of General Electric.
A CAD model of the Arabelle steam turbines, image courtesy of General Electric.

The sheer size and performance figures have earned GE a place on our list of top 5 cool turbomachines!

Number 4 – The Garrett 3571VA Variable Geometry Turbocharger

This is one only gearheads and diesel-fans may recognize, but even then, it’s an obscure one. This Garrett turbocharger was a game changer for diesel engines used in light and medium duty trucks, specifically the Navistar International VT365, also known as the Ford 6.0 Liter Powerstroke engine. Read More

Pump Design to Feed an Elevated Water Storage Tank

This blog post will show an example of a pump design task for a specific application, using the AxSTREAM® pump design and analysis code. Centrifugal pumps are designed to meet the requirements of head rise at the discharge, while at the same time the suction performance at the pump inlet must be free of cavitation over the entire operating range.  This requirement places an additional constraint on a successful pump design and a good example of AxSTREAM® capabilities.

Pump Installation and Performance Requirements

The pump installation is illustrated in Figure 1. The pump will suck water from the bottom of a reservoir and discharge into a raised tank that is 145 feet above the pump. The pump should be designed for optimum efficiency and will be driven by a variable speed electric motor. The design flow rate is 2,000 gallons per minute (GPM) and it must operate free of cavitation at all operating points.

pump installation
Figure 1. The pump installation showing the water reservoir feeding the pump inlet with a 15 feet total suction head, and the discharge tank that is at a height of 145 feet above the pump.

The key performance goals and requirements for the pump are summarized below:

Pumped liquid: water
Density, ρ: 62.3 lbm/ft3
Volume Flow rate: 2,000 GPM
Inlet Temperature, Tt1: 527.7 Rankine
Vapor Pressure, Pv: 0.46011 psi
Static Head Rise: 145 feet

Design and analysis approach

Using AxSTREAM Preliminary Design Solver, thousands of flow path geometries can be generated that satisfy the user defined boundary conditions and geometric parameters within given constraints. By determining key parameters such as suction cavitation performance early at the beginning of the design process, users can minimize development cost while maximizing the pump efficiency. In addition to being able to generate the optimum flow path and pump blades to meet the design point goals, users can also analyze off-design operating conditions for the pump in a system environment that can have changing boundary conditions, thus placing different requirements on the pump.
Read More

Turbomachinery in Racing

While Formula racing is well known for its use of standardized turbocharged V6 engines in all races, they’re certainly not the only races where turbocharged engines are used; and in some cases, the vehicle isn’t even a car! Today’s blog is going to look at turbomachinery in racing, starting with the origin of their usage, and looking at some of the different applications where these machines are found.

As we covered in recent blog, turbocharging has been around since the turn of the 20th century, however its applications was limited for a time to heavy-duty marine applications; high-end cars and trucking; and military aviation. By the 1950’s that had changed thanks to Cummins’ entry in the Indy 500, with their advanced turbodiesel engine raising eyebrows until it catastrophically failed. The point was made though, as Indy banned turbodiesels from the races going forward.  Current IndyCar engine specs call for a 2.2 liter V6 engine that is twin-turbocharged with a fixed boost level. These engines can crank out an astonishing 700 horsepower at full chat, which is around 12,000 RPM. If you’re curious about just how Honda is getting this supercar levels of horsepower out of such an engine, I definitely recommend having a look at the magnificent explanation done by Jason Fenske from Engineering Explained.

On the left #28, the Cummins Diesel special which had the famed turbodiesel engine, and on the right, the 2.2L Honda IndyCar engine. Images courtesy of Truck Trend and Engineering Explained respectively.

We’ll circle back to turbocharged road racing in a moment, but let’s talk about jet engines and the H1, first. Started in 1946, H1 Unlimited is a racing league where teams compete using hydroplanes (not to be confused with the extremely dangerous condition that occurs on wet roads). These hydroplanes rely on lift as opposed to their buoyancy to maintain high speeds and maneuverability. After World War II, the surplus of aircraft engines like the famed Rolls-Royce Merlin V12, discussed in an earlier blog, found their way into these high speed watercraft.

The Lycoming T55 turboshaft engine, powering everything from Chinooks, to race boats. Left image courtesy of Mr. Z-man

In modern times however, H1 Unlimited has now standardized the engines used in competing hydroplanes, and all craft must now use the Lycoming T55 turboshaft engine, which was originally used in the famed Boeing CH47 Chinook helicopter.

Read More

Gas Turbine Cooling System Design Procedures

Introduction

State-of-the-art gas turbine engines usually work under extremely high temperatures. This is directly related to efficiency of the gas turbines – in order to receive the maximum thermodynamics value, it is necessary to increase the gas temperature after the combustion chamber. Engine temperature can be higher than blades’ metal temp up to 500-600 K. Blades, nozzles, and the GT details are manufactured with special heat-resistant steels and in some cases, they require a special coating. That allows them to resist turning into liquid metal under these working temperatures like the T-1000 did in the “Terminator 2: Judgment Day” movie even under high temperatures :).

Picture 1 – T-1000 from Terminator 2
Picture 1 – T-1000 from Terminator 2. Source

However, metal has the property of “creep” – this is the tendency of hard metal to move slowly or permanently deform under stress. This occurs as a result of prolonged exposure to high stresses above the yield point, especially when exposed to high temperatures. Obviously, the solution to this problem is a cooling system for heat-stressed parts, which has allowed the gas temperature to increase by 600 K compared with uncooled machines. Since the gas turbines usually work with air, the simplest way to cool the system is by using this. Typically, the air exhausts to different parts of the compressors and is supplied to the cooling paths and blades which influence the thermodynamics efficiency of the gas turbine engine. Thus, it is crucial to ensure enough cooling to remove the heat on the one hand and on the other hand – to receive the lowest amount of air which requires cooling. Read More