Coupled Digital Engineering Solutions in Podracing: More Bang for your Republic Credits!

Authors note:  While I have the utmost respect for die-hard Star Wars fans, I must confess that growing up, Episode I was my favorite. Perhaps it was the allure of Darth Maul’s dual lightsaber, the adrenaline-pumping Podracing on Tatooine, or Natalie Portman (no elaboration needed) that captivated my young mind. Although May 4th has already passed this year, my love of Episode I combined with my upcoming presentation at JANNAF had me thinking that perhaps it’s time to revisit the engineering behind Podracers.

In a previous blog post, we explored the possibilities of redesigning Anakin’s Podracer. Back then, we discovered that the movie’s turbine and compressor design fell far below the mark. However, poor Ani didn’t have access to the advanced AxSTREAM® software platform for designing turbomachinery systems and components, nor did he possess the financial means to acquire top-of-the-line hardware (let’s be honest, Watto’s junkshop hardly exuded luxury).

Figure 1 Watto’s junkshop in Mos Espa, Tatooine
Figure 1 Watto’s junkshop in Mos Espa, Tatooine. Source

Today, we revisit the exhilarating world of Podracing, determined to avoid the disastrous fate that befell Ben Quadinaros’ craft.

Ben Quadinaros' unfortanate start
Figure 2 Ben Quadinaros’ unfortunate start. Source 

Now, many factors could have contributed to that unfortunate incident. For example, frustration-induced control slamming is never advisable… However, the most plausible explanation is a failure at one of the subsystem interfaces. Why do I think so? Simply because this is a common issue with modern systems, including vehicles. Everyone involved means well and possesses the necessary technical prowess to perform their individual tasks. However, problems often arise when these meticulously designed parts and subsystems attempt to interface seamlessly. This is precisely where a coupled digital engineering solution comes into play! Close your eyes (then reopen them to keep reading) and imagine a place where all critical propulsion and auxiliary components can be modeled together, accommodating any desired conditions (including those we cannot run with physical hardware on a test bench).

Read More

Turbomachinery Evolution through Generative Design

As human-beings, our differences are what makes us unique (if I may quote the Seek Discomfort crew – “What makes you different is what makes you beautiful”). For turbomachines, this sentiment also rings true.  We design different turbomachines because we have varied roles, needs and constraints for them. To that effect, there is no universally best turbine, compressor, or pump. Therefore, figuring out which set of “skills” a turbomachine should have is the key role of a design engineer so that they may effectively capture and estimate performances of the machine they will work on early on while having the certitude this is the best that can be done.

Generative design is one of these recent buzzwords that characterizes an approach to the design of components (or systems) that has been around for quite some time already. Rather than producing one geometry for one value of each input (such as boundary conditions, flow coefficients, number of stages, etc.), generative design allows you to create thousands of designs within minutes that you can review, compare, and filter to select the one that best suits your needs. Let’s look at an example of an axial turbine design process comparing traditional preliminary design vs. generative design.

Approach 1 or what most companies call Traditional Preliminary Design,  is to look in textbooks and previous examples of what a given turbine for that application “should” look like. It may involve things like using Ns-Ds diagrams, load-to-flow diagrams, blade speed ratio vs. isentropic velocity ratio correlations, scaling/trimming existing designs, etc. These have served their purpose well enough, but they have their limitations which make them fairly challenging to really innovate. Such limitations include previous experience/data being restricted to a given fluid, relative clearance size, given configuration, lack of secondary flows, etc. A summary of a traditional preliminary design workflow (familiar to too many engineers) is presented below.

Summary of traditional preliminary design workflow
Figure 1 Summary of traditional preliminary design workflow

Now, we know that changing (ahem, improving) your workflow is not always easy. But growth happens through discomfort and switching to a generative design approach does NOT mean rebuilding everything your team has done in the past. What it effectively gives you is the confidence that the input parameters you finalized will provide not only the desired performance but the best ones that can be achieved (and it saves time too…a lot of time). From there, you can use these inputs in your current design software or you can continue the design process in our design platform, AxSTREAM® (meaning you can add generative design capabilities upstream of your existing workflow or replace parts/all of that workflow depending on what makes the most sense for you). You can pay your engineers to do engineering work, instead of visiting online libraries and guessing input parameters in hope they will find the needle in the haystack. Or, with generative design, you kind of look for haystacks and shake them until the needle falls off.

So, how does this work in AxSTREAM, you may ask? Very well, I may reply :D. Read More

Turbomachinery and Rockets – a Historical/Technical Evolution

Introduction

Quite surprisingly, rockets in their primal form were invented before turbomachinery, even though turbines and pumps are both present in modern launcher engines. However, it is interesting to note that  both can be traced to the same ancestor. In this post we will discuss some of the history and technical evolution of rockets and turbomachinery – and this all starts with an old pigeon.

Figure 1. Steam Turbine and Rocket

Rockets

Circa 400BCE, a Greek philosopher and mathematician named Archytas designed a pigeon-like shape made out of wood that was suspended with wires and propelled along these guides using steam demonstrating the action-reaction principle long before Newton formalized it as a rule in Physics. As we know today, the faster and the more steam escapes the pigeon, the faster it goes. Turn this 90 degrees to have the bird face upward, and you have a very basic rocket concept. However, rockets are a lot more complex than this, and do not typically use steam (except in the case of liquid hydrogen + liquid oxygen propellants) as the propelling fluid.  Read More

An Introduction to Accurate HVAC System Modeling

Update – March 1, 2023: AxSTREAM NET is our legacy software, replaced by AxSTREAM System Simulation. System Simulation was born out of the union of the legacy AxCYCLE and AxSTREAM NET software packages.

HVAC (Heat, Ventilation and Air Conditioning) is all about comfort, and comfort is a subjective feeling associated with many parameters like air quality, air temperature, surrounding surface temperature, air flow and relative humidity. For example, while it is easy to understand how the temperature of the air in your living impacts how good you feel, the surfaces with which you are in contact also strongly affect your comfort. For example, last night I got out of bed to clean up after my dog who thought it would be a good idea to swallow (and give back) her chew toy. If I was wearing my slippers, it would have been much easier to go back to sleep between the warm bed sheets without the discomfort of waiting my cold feet warm up to normal temperature.

Speaking of sleep discomfort, many stem from HVAC imbalances.  If you wake up in the middle of the night quite thirsty, then you should probably check how dry your bedroom is. The recommended range is 40-60% relative humidity. A higher humidity puts you at risk for mold while lower humidity can lead to respiratory infections, asthma, etc.

Now that we know how HVAC contributes to our comfort, let’s look at the HVAC unit as a system and see its role, functioning and simulation at a high level. The following examples provided are for a house, but similar concepts apply to residential buildings, offices, and so on.

Controlling Temperature

The easiest parameter to control is the air temperature. It can be set by a thermostat and regulated according to a heating or cooling flow distributed from the HVAC unit to the different rooms through ducting. Without the introduction of thermally-different-than-ambient air, the house will heat or cool itself based on a combination of outside conditions and how well the building is insulated. Therefore, to keep a constant temperature a certain amount of energy must be used to provide heating (or cooling) at the same rate the house is losing (or gaining) heat.  This is a match of the house load and heating/cooling capacity. Figure 1 provides a graph of the energy needed.

Illustration of dependency of house load and heating capacity on outside temperature
Figure 1 Illustration of dependency of house load and heating capacity on outside temperature

Read More

Engineering Luke Skywalker’s X-34 Landspeeder

Today, landspeeders we look at!

Introduction

Landspeeders belong to the “repulsorlift” transport class, like the podracers we looked at last year, and travel above a world’s surface (up to 2 meters) without contact (very useful on swampy lands like Dagobah). Landspeeders are the successors to the hanno speeder which was mainly used as a racing vehicle with many Tatooine natives still using them to race in the Boona Eve Classic today.

Luke Skywalkers Soro Suub Corporation X-34 landspeeder
Figure 1:  Luke Skywalker’s Soro Suub Corporation X-34 landspeeder from the 1977 film – Note, the Soro Suub Corporation was your main go-to landspeeder designer and manufacturer before and during the reign of the Galactic Empire even though it specialized mostly in mineral processing. Image source

Landspeeders are found in both civilian and military applications but due to intergalactic ITAR regulations we will only cover the civil aspect here with a focus on the most famous of them all. If you want to know more about our experience working with military, defense and governmental organizations (whether you area part of the Empire, Rebels, Resistance or Separatists) feel free to contact us.

The Famous X-34

Luke Skywalker’s X-34, with its 6 selectable hover heights, features an engine consisting of 3 air-cooled thrust gas turbines able to reach a top speed of about 155 mph. The side engines are also used for steering although it is not obvious whether this steering is achieved by varying their thrust to be asymmetric or through vectoring of their exhaust. With the X-34 total length being 3.4 meters it helps us estimate the overall dimensions of its engines which are, each, roughly 80 cm long by 30 cm wide. Read More

Redesigning Anakin Skywalker’s Podracer

Ever since circa 100 BBY, Podracing in its modern version has drawn crowds from far far away to watch pilots compete in races like the Boonta Eve Classic which made Anakin Skywalker famous and won him his freedom. By beating Sebulba, the Dug, and the other Podracers, Anakin became the first human to be successful at this very dangerous sport. The Force helped him in his victory by sharpening his reflexes, but his repulsorcraft was also superior due to its size and the modifications made to its twin Radon-Ulzer 620C engines, especially the fuel atomizer and distribution system with its multiple igniters which makes them run similarly to afterburners seen on some military planes on Earth.

Figure 1 Pilots and their Repulsorcrafts at the Start of the Boonta Even Classic Race on Tatooine
Figure 1 Pilots and their Repulsorcrafts at the Start of the Boonta Eve Classic Race on Tatooine

Let’s take a deeper look at what repulsorcrafts are and how we can help Anakin redesign his to gain an even better advantage against the competition, provided that Watto has the correct equipment in his junk yard. Read More

Tidal Energy

If you’re looking for clean, free energy… a song comes to mind.

Tide after tide.
If you flow I will catch – I’ll be waiting.
Tide after tide.

With no particular link to Cyndi Lauper, waves just want to have fun so let’s allow them to do so while catching their drift as a potential energy source using tidal turbines.

Introduction:

Wave energy is a form of hydropower used to convert energy obtained from tides into mechanical and/or electrical power. Wave energy is produced when electricity generators are placed on the surface of the ocean. The energy provided is most often used in desalination plants, power plants and water pumps. Energy output is determined by wave height, wave speed, wavelength, and water density.

sea wave during storm
Figure 1 Ocean Waves

How are Tides Generated:

Tidal forces are periodic variations in gravitational attraction exerted by celestial bodies. It is these forces that are responsible for the currents in the world’s oceans. A local, strong attraction on a part of the ocean allied with moving celestial bodies and the rotation of the Earth leads this bulging part of water to meet the adjacent shallower waters of the shoreline which creates the tides.

Read More

The Pros and Cons of Wind Energy

Who knew passing wind would be so exhilarating?

Last month we discussed a few basic aspects of wind as a source of clean energy. We showed what wind was, how it forms and where it goes.  Then after going on a tangent about the history of turbines, we showed where on the Earth we could recover the highest amount of wind energy and how this potential changes with altitude. Today’s post offer the pros and cons of wind energy while touching upon several topics discussed in the previous post before diving into the optimal where and when.

Getting into the “What”

With an established worldwide potential of more than 400 TW (20 times more than what the entire human population needs) and a clean, renewable source wind is definitely attractive to the current and future generations. In terms of harvesting it, over 99% percent of wind farms in the USA are located in rural areas with 71% of them in low-income counties. Indeed, the more land is available (and the fewer buildings), the higher the possibility and interest to transform this kinetic energy into mechanical work and then most likely electricity.

Where one would see sporadic turbines on the side of the highway, these stand-alone equipment have begun to turn into actual modules (farms) that can work as an overall unit instead of individual ones. This strategy of creating a network of turbines follows the philosophy of “the Whole is Greater than the Sum of its Parts”. What this translates into is that by having 20 (arbitrary number) wind turbines working together to determine the best orientation, pitch, etc. of their blades in such a way that it least negatively impacts the downstream units we can produce more energy than if each of them were live-optimized individually (some interesting A.I. work is going into this). This means that the overall system is more efficient at converting energy and therefore it is more cost effective to provide bulk power to the electrical grid. This is similar to the concept in the post on solar energy comparing PV panels and CSP. Read the full post here. 

In terms of power production per wind turbine, the utility-scale ones range from about 100 kW to several MW for the land-based units (Offshore wind turbines are typically larger and produce more power – getting ahead of myself here but check out the figure below for wind potential in Western Europe that clearly showcases coast vs. non-coast data). On the low-power end of the spectrum, we find some below 100 kW for some non-utility applications like powering homes, telecommunications dishes, water pumping, etc. Solar power (PV) is generally regarded as the first choice for homeowners looking to become energy producers themselves, but wind turbines make an excellent alternative in some situations. It would take a wind turbine of about 10 kilowatts and $40,000 to $70,000 to become a net electricity producer. Investments like this typically break even after 10 to 20 years.

Wind potential in Western Europe
Figure 8 Wind potential in Western Europe – https://globalwindatlas.info/

Onto the “Where”

One of the elements of wind formation we covered in the last post here was a different in pressure (and therefore temperature). This simplification works rather well at the macro-scale, but as we zoom in closer to the surface we can see that wind flow speeds and patterns vary quite significantly based on more than just the general location of Earth. On top of the altitude we already discussed, factors like vegetation, presence of high-rise buildings or bodies of water come into play.

Read More

The What, Where and How of Wind Power

Choosing how to start something is often the most challenging part since the rest is usually about moving with the flow (turbomachinery pun intended). So, now that we got that out of the way let’s talk about our next topic after we do a quick flashback on the previous episodes of this Clean Energy series.

In the first post in this series, we discussed clean energy as a whole. After describing what it is and what it is not, we pointed out some of the energy sources we would analyze in subsequent articles.

The second post in this series took us on an extraterrestrial journey for two reasons: we looked at solar energy and we also went on a tangent about the rovers operating on planet Mars. I got so many “Likes” on these little droids that I figured I would keep going with them (that or I found a cool article that I’ll be sharing here) for this current post on one of the fastest-growing energy sources in the world: Wind Energy. What’s the link between Mars equipment and wind? See this recent discovery – https://www.space.com/41023-mars-wind-power-landers-experiment.html

Side note: ever wondered what would happen if the sun just blinked out? Check it out here – https://what-if.xkcd.com/49/

The wind we are looking at in today’s post is somewhere in between bovine flatulence and hurricanes in terms of intensity. Wind as we know it is created by air (or any fluid) moving from a zone of high pressure to one of low pressure. This high-to-low concentration migration might sound tricky, but it is easy to understand if you think of cars on a highway. It is more likely that cars stuck in a slow lane on the highway would move on to a lane with less traffic rather than the other way around.

Pressure varies with things like irregularities on the Earth surface, AKA altitude (“in case loss of cabin pressure occurs, oxygen masks will drop […]”), but also with temperature. This means that two people at the same altitude but in areas of different temperatures would experience different pressures. For example, think of standing at the North Pole vs. standing on a Caribbean beach vs. standing on a paddleboard in the Great Lakes. This example of standing at different places demonstrates the uneven heating of the Earth from the sun due to its shape (not flat), its rotation and its tilt, as we introduced in the previous post. But which location is under the most pressure? Colder temperature equals higher pressure.  Let me explain with another analogy, (even though this example has nothing to do with pressure, it will help the information stick).  When people get stressed, we say they are under pressure.  We can imagine somebody above the Arctic Circle is more stressed (cold, where to find food, shelter, etc.) than somebody enjoying a Mai Tai on the beach at an all-inclusive resort in Aruba. So here is your mnemonics; colder equals higher pressure.

Wind creation example
Figure 1 Wind creation example – http://www.ei.lehigh.edu/learners/energy/wind1.html 

Now that we have seen what wind was and the theory behind how it forms, we can start thinking about how to utilize this energy. Today we will talk about the aerodynamic aspect of wind turbines while in a future post we will be focusing on the assessment of such technology as wind power; pros, cons, where, what, etc.
Read More

Solar Energy – What is it and How is it Used?

“That sun is trying to kill us” is something I hear every other day from my wife. Growing up and settling in the Midwest of the USA, she is used to the beating heat from our local star. I remember a particular summer when the consecutive number of days over 100F (~38C) was well over 60.

As you can imagine this post is about the sun. (By which, I mean the star closest to us, but similar principles would apply to other solar systems). The emphasis will be made on understanding what this energy is, and how we can harness it.

First, let’s discuss solar energy in general. As its name suggests, this type of energy comes from the sun. (Solaris means sun in Latin and is where our word solar comes from). So far, so good. Now, even though “radiation” gets a bad reputation, this is actually how the heat and energy from our star reaches us. The radiation is produced by nuclear reactions in our sun’s core. Two hydrogen atoms get fused together to form one helium atom. The chemical reaction releases heat and light. And all of this is occurring inside the sun 93 million miles away in space. The light and heat travel through space. Then some of that energy, in the form of radiation, reaches us here on Earth.

Now that we know what energy solar energy is and where it comes from, let’s briefly discuss the processes we currently have to capture this energy and what uses we can make of it.

There are primarily two types of sun power harnessing systems:

  1. Solar panels
  2. Concentrated Solar Power (also known as CSP)


Solar panels are typically photovoltaic (PV) which means that they will convert photon energy (photo) into electricity (voltaic). When you think of such technology the roof of houses and office buildings (PV panels – comprised of several PV cells) is usually the first example to come to mind. But, don’t forget the small solar cells used to power your calculator (PC cell), or the much larger installations on the side of the highway (PV arrays – comprised of multiple PV panels). After capturing this solar energy, you can either use it for your personal needs, or in some cases you can sell it back to the grid. Note: Amazon recently completed its 17th rooftop solar project by installing a 1.1 MW array on its Las Vegas fulfillment center (https://www.renewableenergyworld.com/articles/2018/05/amazon-s-onsite-solar-just-went-up-a-notch.html).Another way solar panels work for domestic application is to circulate a liquid through the panels to heat the home (air heating, water heating, and so on).

CSP use a different technology altogether. Fields of mirrors (that rotate with the sun) are used to concentrate the energy from the sun into what is called a “black body”. In heat transfer terms, this refers to something that has a high thermal coefficient (emissivity) and typically sits at the top of a tower. If you have ever used a magnifying glass to concentrate solar energy on some dry twigs to start a fire, you have seen how effective this approach can be.

Figure 1 CPS project
Figure 1 CPS project – http://helioscsp.com/2017/02/

The previous blog post of this series mentioned that both nuclear and solar sources were considered clean energies with solar being renewable while our sun still shines. What makes it clean exactly? I am glad you asked! (I know you did not, but let’s pretend you did.) To quote my last post, clean energies are defined as “energies that do not pollute the atmosphere when used.” With solar energy, the process of energy creation is indeed harmless to the surrounding. The environmental impact of the systems to manufacture items needed to capture the solar energy and recycling/disposing of waste products from that process may pollute. Some will argue that solar arrays can be a visual pollution, but that objective opinion does not make solar a “dirty” energy since gathering the energy neither produce pollutants nor emits carbon dioxide.
Read More