Turbo-compressor Technologies for Aviation Fuel Cell Systems: Operational Requirements and Development Trends

Introduction

Fuel cells are an important driver in the current energy system landscape with significant impact on the technology base and economic growth. Global fuel cell system shipments saw a 10% increase in 2020, totaling 1.3GW. The transport sector continues to lead with a growth of 25% on the number of units shipped globally.

The recent years have seen the launch of many projects aimed at the development of fuel cell systems for aviation powerplants. In this context, the effective integration of turbomachinery components is key in driving the overall performance and the economic viability of this technology. These aspects are the topic of this blog.

Fuel Cell Technology

Fuel cells are devices which convert the chemical energy of a fuel directly into electricity by electrochemical reactions. A fuel cell element has a matching pair of electrodes (anode and cathode) separated by an electrolyte. An appropriate flow of fuel (e.g. hydrogen) and oxidizer (frequently oxygen) is delivered to the electrodes: the resulting reaction produces electricity and water plus an amount of heat. The simplicity of this process is shown in Figure 1.

Fuel Cell Conceptual Scheme
Figure 1. Fuel Cell Conceptual Scheme (Source).

There are many advantages: efficiency, reliability, low noise, and compactness, all while implementing an environmentally progressive solution. The application potential is also very diversified, sometimes in very critical fields.

Read More