Modifying Gas Turbines to Burn Hydrogen Fuel

Hydrogen fuel and renewable energy are becoming increasingly relevant in the gas turbine industry as the world shifts towards decarbonization. Hydrogen fuel, in particular, is seen as a promising alternative to traditional fossil fuels due to its clean-burning properties. As a result, many gas turbine manufacturers are exploring ways to modify existing engines to run on hydrogen or hydrogen mixtures. Additionally, the use of renewable energy sources such as wind and solar power to generate hydrogen fuel is gaining traction, providing a sustainable solution for the gas turbine industry. These developments are crucial in reducing carbon emissions and meeting climate goals, making hydrogen and renewable energy an essential focus for the future of the gas turbine industry.

In light of these developments, one of the key methods to achieve decarbonization is to use a mixed renewable gas (e.g., green hydrogen, biogas, syngas) or pure hydrogen (in the future) as a fuel for stationary gas turbine engines (GTE) that generate electricity.

Figure 1: Heavy Duty Gas Turbine, AE94.3A (Ansaldo Energia) [1]
The main advantage of this method is that companies need not design and manufacture fundamentally new engines for hydrogen combustion. Instead, modifying the existing GTE fleet is sufficient. Another benefit of introducing hydrogen gas turbine technology is the possibility of using idle or underutilized equipment, thereby providing a new lifecycle. Read More

Stage Number Selection in Axial Aircraft Turbines

Choosing the number of stages during the development of axial turbines is one of the most controversial design tasks because it has many options to consider. This task does not have an exact solution, since it depends on the total turbine work, circumferential velocity and is determined by a combination of gas-dynamic, strength, construction, and technological factors. This blog will discuss some of the considerations for stage number selection of an axial turbine.

Using Stage Loading vs Parson’s Parameter

Designing turbines requires the use of complex parameters to simultaneously consider the influence of various factors on the characteristics of the turbine. Thus, the stage loading (mostly aircraft turbines) or the Parson’s parameter (stationary turbines and aircraft turbines) have been used for wide applications in turbines theory.

  • Stage loading is the ratio of the theoretical turbine work LU and the square of the circumferential velocity U.

­Stage loading Formula

  • Parson’s parameter y is the ratio of the circumferential speed to the speed equivalent to the isentropic heat drop.

­Parson's Parameter

High turbine efficiency is achieved, when these parameters are in the range μT = 1.2…1.6 (y=0.45…0.6), which can be seen in Figures 1 and 2 [1], respectively.

Figure 1 total to total turbine

Figure 2 Turbine Stage Hydraulic efficiency

Read More