The Brayton cycle is the fundamental constant pressure gas heating cycle used by all air-breathing jet engines. The Brayton cycle can be portrayed by a diagram of temperature vs. specific entropy, or T–S diagram, to visualize changes to temperature and specific entropy during a thermodynamic process or cycle. Figure 1 shows this ideal cycle as a black line. However, in the real world, the compression and expansion processes are never isentropic, and there is always a certain pressure loss in the combustor. The real Brayton cycle looks more like the blue line in Figure 1.

(Source: https://commons.wikimedia.org/wiki/File:Ts_Real_Brayton_Cycle_2.png)
The four stages of this cycle are described as:
1-2: isentropic compression
2-3: constant pressure heating
3-4: isentropic expansion
4-0: constant pressure cooling (absent in open cycle gas turbines)
The most basic form of a jet engine is a turbojet engine. Figures 2a and 2b provide the basic design of a turbojet engine. It consists of a gas turbine that produces hot, high-pressure gas, but has zero net shaft power output. A nozzle converts the thermal energy of the hot, high-pressure gas at the outlet of the turbine into a high-kinetic-energy exhaust stream. The high momentum and high exit pressure of the exhaust stream result in a forward thrust on the engine. Read More