Modeling and Analysis of a Submarine’s Diesel Engine Lubrication System

Even in today’s age of underwater nuclear power, the majority of the world’s submarines still use diesel engines as their main source of mechanical power, as they have done since the turn of the century. A diesel engine must operate at its optimum performance to ensure a long and reliable life of engine components and to achieve peak efficiency. To operate or keep running a diesel engine at its optimum performance, the correct lubrication is required. General motors V16-278A type engine is normally found on fleet type submarines and is shown in Figure 1. This engine has two banks of 8 cylinders, each arranged in a V-design with 40 degree between banks. It is rated at 1600 bhp at 750 rpm and equipped with mechanical or solid type injection and has a uniform valve and port system of scavenging[1].

Figure 1. GM V16-278A, Submarine Diesel Engine. SOURCE: [1]
Figure 1. GM V16-278A, Submarine Diesel Engine. SOURCE: [1]
Lubrication system failure is the most expensive and frequent cause of damage, followed by incorrect maintenance and poor fuel management. Improper lubrication oil management combined with abrasive particle contamination cause the majority of damage. Therefore, an efficient lubrication system is essential to minimize risk of engine damage.

The purpose of an efficient lubrication system in a submarine’s diesel engine is to:

  1. Prevent metal to metal contact between moving parts in the engine;
  2. Aid in engine cooling by removing heat generated due to friction;
  3. Form a seal between the piston rings and the cylinder walls; and
  4. Aid in keeping the inside of the engine free of any debris or impurities which are introduced during engine operation.

­
All of these requirements should be met for an efficient lubrication system. To achieve this, the necessary amount of lubricant oil flow rate with appropriate pressure should circulate throughout the entire system, which includes each component such as bearings, gears,  piston cooling, and lubrication. If the required amount of flow rate does not flow or circulate properly to each corner of the system or rotating components, then cavitation will occur due to adverse pressure and excessive heat will be generated due to less mass flow rate. This will lead to major damage of engine components and reduced lifetime.
Read More

Modeling a Ground Source Heat Pump

Ground source heat pumps (GSHP) are one of the fastest growing applications of renewable energy in the world, with annual increase of 10% in about 30 countries over the past 15 years.  Its main advantage is that it uses normal ground or ground water temperatures to provide heating, cooling and domestic hot water for residential and commercial buildings. GSHP’s are proving to be one of the most reliable and cost-effective heating/cooling systems that are currently available on the market and have the potential of becoming the heating system of choice to many future consumers, because of its capacity for providing a variety of services such as heat generation, hot water, humidity control, and air cooling. Additionally,  they have the potential to reduce primary energy consumption, and subsequently provide lower carbon emissions, as well as operate more quietly and have a longer life span than traditional HVAC systems. The costs associated with GSHP systems are gradually decreasing every year due to successive technological improvements, which makes them more appealing to new consumers.

The basic purpose of a GSHP is to transfer heat from the ground (or a body of water) to the inside of a building. The heat pump’s process can be reversed, in which case it will extract heat from the building and release it into the ground. Thus, the ground is the main heat source and sink. During winter, the ground will provide the heat whereas in the summer it will absorb the heat.

A GSHP comes in two basic configurations: ground-coupled (closed-loop) and groundwater (open loop) systems, which are installed horizontally and vertically, or in wells and lakes. The type chosen depends upon various factors such as the soil and rock type at the installation, the heating and cooling load required, the land available as well as the availability of a water well, or the feasibility of creating one. Figure 1 shows the diagrams of these systems.

Two Basic Configurations
Figure 1. Two Basic Configurations of GSHP Systems. SOURCE: [1]
In the ground-coupled system (Figure 1a), a closed loop of pipe, placed either horizontally (1 to 2 m deep) or vertically (50 to 100 m deep), is placed in the ground and a water-antifreeze solution is circulated through the plastic pipes to either collect heat from the ground in the winter or reject heat to the ground in the summer. The open loop system (Figure 1b), runs groundwater or lake water directly in the heat exchanger and then discharges it into another well, stream, lake, or on the ground depending upon local laws. Between the two, ground-coupled (closed loop) GSHP’s are more popular because they are very adaptable.
Read More

Pump Performance Improvement Using AxSTREAM ION

As pumps have numerous uses, they constitute a significant part of energy consuming equipment.  Therefore, pump efficiency plays a significant role in energy savings and operating cost. The design of a centrifugal pump is more challenging to reduce overall cost of the pump and increasing demand for higher performance.

Redesign Pump with Smooth Beta and Theta Distributions
Figure 1. Centrifugal Pump in AxSTREAM

There are two traditional approaches to design a pump for new requirements. One approach is to redesign or modify an existing impeller of centrifugal pump for increasing flow rate/head and efficiency. The modification will also involve selection of different geometric parameters and then optimizing them with the goal of performance improvement in terms of efficiency, increase the head, reduce cross flow and secondary incidence flows. The other approach is to design a pump from the preliminary stage to meet the desired design objectives. Most of the time, the designer knows what they need to achieve (performance target) but the challenge is in how to achieve this target within the given constraints (geometry, cost, manufacturability etc.).
Read More

Thermal Management in Automotive Electric Propulsion Systems

There is a growing interest in electric and hybrid-electric vehicles propulsion system due to environmental concerns. Efforts are directed towards developing an improved propulsion system for electric and hybrid-electric vehicles (HEVs) for various applications in the automotive industry. The government authorities consider electric vehicles one of several current drive technologies that can be used to achieve the long-term sustainability goals of reducing emissions. Therefore, it is no longer a question of whether vehicles with electric technologies will prevail, but when will they become a part of everyday life on our streets. Electric vehicles (EVs) fall into two main categories: vehicles where an electric motor replaces an internal combustion engine (full-electric) and vehicles which feature an internal combustion engine (ICE) assisted by an electric motor (hybrid-electric or HEVs). All electric vehicles contain large, complex, rechargeable batteries, sometimes called traction batteries, to provide all or a portion of the vehicle’s propelling power.

EVs propulsion system offers several advantages compared to the conventional propulsion systems (petrol or diesel engines). EVs not only help reduce the environmental emissions but also help reduce the external noise, vibration, operating cost, fuel consumption while increasing safety levels, performance and efficiency of the overall propulsion system. However, there are many reasons why EVs and HEVs currently represent such a low share of today’s automotive market. For EVs, the most important factor is their shorter driving range, the lack of recharging infrastructure and recharging time, limited battery life, and a higher initial cost. Though HEVs feature a growing driving range, performance and comfort equivalent or better than internal combustion engine vehicles, their initial cost is higher and the lack of recharging infrastructure is a great barrier for their diffusion. Therefore, industry, government, and academia must strive to overcome the huge barriers that block EVs widespread use: battery energy and power density, battery weight and price, and battery recharging infrastructure. All major manufacturers in the automotive industry are working to overcome all these limitations in the near future.

Common Types of Electric Vehicles
Classification of EVs according to the types and combination of energy converters used
Figure 1. Classification of EVs according to the types and combination of energy converters used (electric motor & ICE). SOURCE:[3]
A more universal EVs classifications is carried out based on either the energy converter types used to propel the vehicles or the vehicles power and function [4]. When referring to the energy converter types, by far the most used EVs classification, two big classes are distinguished, as shown in Figure 1, namely: battery electric vehicles (BEVs), also named pure or full-electric vehicle, and hybrid-electric vehicles (HEVs). BEVs use batteries to store the energy that will be transformed into mechanical power by electric motors only, i.e., ICE is not present. In HEVs, propulsion is the result of the combined actions of electric motor and ICE. The different manners in which the hybridization can occur give rise to different architectures such as: series hybrid, parallel hybrid, and series-parallel hybrid. All these different EVs architectures are shown in Figure 2.

Architectures of different EVs and HEVs
Figure 2. Architectures of different EVs and HEVs. SOURCE:[3]
Read More

Thermal Management in Aerospace Electric Propulsion Systems

The growing interest towards electric propulsion system for various applications in aerospace industry is driven first by the ambitious carbon emissions and external noise reduction targets. An electric propulsion (EP) system not only helps reduce the carbon emissions and external noise, but also helps reduce operating cost, fuel consumption and increases safety levels, performance and efficiency of the overall propulsion system. However, the introduction of electric propulsion system leads engineers to account for certain key challenges such as electric energy storage capabilities, electric system weight, heat generated by the electric components, safety, and reliability, etc. The available electric power capacity on board may be one of the major limitations of EP, when compared with a conventional propulsion system. This may be the reason electric propulsion is not the default propulsion system. Now, let’s consider how electric propulsion is used in the aerospace industry. Following the hybridization or complete electrification strategy of the electric drive pursued on terrestrial vehicles, the aerospace industry is giving great attention to the application of electrical technology and power electronics for aircrafts.

Figure 1 Aircraft Electric Propulsion Architectures
Figure 1. Aircraft Electric Propulsion Architectures. SOURCE: [1]
Electric Propulsion in aircrafts may be able to reduce carbon emissions, but only if new technologies attain the specific power, weight, and reliability required for a successful flight. Six different aircraft electric propulsion architectures are shown in Figure 1, above, one is all-electric, three are hybrid electric, and two are turbo-electric.  These architectures, rely on different electric technologies (batteries, motors, generators, etc.).

Read More

An Introduction to Thermal Management in Electric Propulsion Systems

Reduction in CO2 emissions is driving the development of different electric, turbo-electric and hybrid electric propulsion systems for various applications and industries including space, aviation, automotive and marine. Electric propulsion (EP) is not a new concept, having been studied in parallel with chemical propulsion for many years. EP is a generic name encompassing all the ways of accelerating a propellant using electric power by different possible electric and/or magnetic means. The simplest way to achieve electric propulsion is to replace the heat generated by combustion in conventional chemical engines with electrical heating.

Electric propulsion systems offer several advantages compared to other conventional propulsion systems. It not only helps reduce the environmental emissions but also helps reduce fuel consumption and increases safety levels. Electric propulsion has become a cost effective and sound engineering solutions for many applications. Electric propulsion engines are also more efficient than others. It is proven to be one of the most energy saving technologies as we can use more renewable sources of energy (due to the versatility of electricity generation) instead of non-renewable sources of energy like gasoline. The major limitation of electric propulsion, when compared with conventional propulsion is limited by the available electric power capacity on board, this may be the reason, it is not the default propulsion system.

Electric Propulsion Architectures
Figure 1. Electric Propulsion Architectures. SOURCE: [4]
Generally, electric propulsion architectures vary depending on the application. Figure 1, above, shows the EP architectures for an aviation application. These architectures rely on different electric technologies (batteries, motors, generators, and so on). Typical aircrafts use gas turbine engines as the source of propulsion power, but all electric aircraft systems use batteries as the only source of propulsion power as shown in Figure 1 on the right. The hybrid systems use gas turbine engines for propulsion and to charge batteries which also provide energy for propulsion and accessories during one or more phases of flight as shown in Figure 1 on the left. Read More

Role of AxSTREAM® in Radial Turbine Design

[:en]Radial turbines are quite popular for turbochargers and micro-gas turbines. They can also be found in compact power sources like in auxiliary power units of aircrafts. In short, they are suitable in power generation applications where expansion ratios are high and mass flow rates are relatively small. In a radial turbine, the flow enters radially and exits either axially or radially depending on whether it is an inflow or outflow type radial turbine. The most commonly used type of radial turbine is a radial-inflow turbine, in which the working fluid flows from a larger radius to a smaller radius. A centripetal turbine is very similar in appearance to the centrifugal compressor, but the flow direction is reverse. Figure 1 shows the radial-inflow turbine on the left and radial-outflow turbine on the right.

Radial-inflow turbine on the left; Radial-outflow turbine on the right
Figure 1: Radial-inflow turbine on the left; Radial-outflow turbine on the right

Nowadays, the popularity of radial-outflow turbines, in which the flow moves in the opposite direction (from the center to the periphery), is growing. With recent advancement in waste heat recovery applications, there has been a renewed interest in this type of turbines. These radial-outflow turbines are most commonly used in applications based on organic Rankine cycles (ORC).

The radial-outflow turbine design was first invented by the Ljungström brothers in 1912, however it was rarely used for a number of reasons. One of which was related to the decrease of turbine-specific work due to the increase of the peripheral velocity from inlet to outlet while expanding the vapor. Another reason was the usage of steam as a working fluid. It is known from thermodynamics that the expansion of steam is characterized by high enthalpy drops, high volumetric flows and high volumetric ratios. Thus, a significant number of stages are needed to convert the enthalpy drop of the fluid into mechanical energy.

Read More