Automatic Turbocharger Compressor Design
In the age of green energy and increased efforts to minimize our carbon footprint, the design of a turbocharger plays an important role in reducing engine fuel consumption and emissions while increasing the performance. When developing an engine with a turbocharger, the general approach is to select a turbocharger design from a product list. The primary issue with this approach is that it does not cover 100% of the requirements of engine characteristics, i.e. it has non-optimal construction for the engine being developed. The operational characteristics of an engine directly depends on the interactions between the system components. This non-optimal construction will always lead to a decrease in the engine’s performance. In addition, the iteration process of turbocharger selection is time and resource consuming.
That is why the most optimal way to develop an engine with turbocharging is to design a turbocharger from scratch; wherein the operational points of compressor needed to satisfy the engine’s optimal operation are known, i.e. compressor map (Figure 1). But how do we quickly get a compressor map? Even at the preliminary design level, the design of turbocharger flow path requires dozens of hours for high-level engineers. And what about less experienced engineers?

Incorporating a digital engineering approach with a turbomachinery design platform such as AxSTREAM® allows designers to find the compressor design with all the required constraints which correspond to the specified compressor map needed. The design process is presented in Figure 2. Read More