Axial Compressor Challenges in Hyperloop Designs

Back when the California high-speed rail project was announced, Elon Musk (CEO of SpaceX and Tesla Inc. and perhaps the most admired tech leader of present day) was not only disappointed with this project, but also introduced an alternative to this system called the Hyperloop in 2012.  Since the abstract of this project was introduced, many engineers around the world have started to evaluate the feasibility of this “5th Mode of Transportation”.

Hyperloop Alpha Conceptual Design Sketch
Hyperloop Alpha Conceptual Design Sketch

The general idea for the Hyperloop consists of a passenger pod operating within a low-pressure environment suspended by air bearings.  At the realistic speeds estimated by NASA of 620 mph, the pod will be operating in the transonic region.  While Japan’s mag-lev bullet train has succeeded at achieving speeds of up to 374 mph, the scale and complexity of a ground transportation system rising above 600 mph bring to surface an unusual number of engineering challenges. As well, brand new designs such as the one proposed by Musk have a certain amount of risk involved due to this technology inherently having no previous run history on a large scale.

Of the many concerns with his original design, perhaps the largest resides on how to design and operate the axial compressor in front of these pods. The supposed function of the compressor is two-fold. The first function would be to overcome the Kantrowitz limit. Musk uses an analogy between the pod and tube and a syringe:

“Whenever you have a capsule or pod (I am using the words interchangeably) moving at high speed through a tube containing air, there is a minimum tube to pod area ratio below which you will choke the flow. What this means is that if the walls of the tube and the capsule are too close together, the capsule will behave like a syringe and eventually be forced to push the entire column of air in the system. Not good.”

Aero Booster
Figure 2 – Safran Aero Boosters Low-Pressure Compressor – Assembly View

An onboard compressor in front of the pod will allow the collected column of air traveling in front of the pod to flow through the system without compromising the increasing velocities of the pod. A second function of the compressor would be to supply air to the air bearings that support the weight of the capsule throughout the passage.

Traditionally, axial compressors are coupled with a complimentary turbine at the exhaust that provides mechanical power to the compressor. In the hyperloop, the proposed compressor arrangement will be driven by electric motors instead of turbines. This is a relatively new design that has only been tested on a handful of electric powered jet aircrafts for research purposes. Furthermore, Musk proposed a compression ratio of about 20:1, which would require several compression stages for an axial compressor arrangement and an intercooler system. The temperature increases resulting from this high order compression require a complex cooling method or a traditional steam pressure vessel for the proper dumping of hot air. A final challenge on the compressor end would be the fact that it will be operating at a very low pressure. Only a handful of companies like Safran Aero Boosters have the necessary experience with low-pressure compression.

In general, while this new proposed mode of transportation is very exciting and innovative from an engineering standpoint, the following challenges specific to the on-board compressor will require serious collaborations amongst the leaders in the compressor design industry:

  • Electric Motor Driven Compressor
  • High Compression Ratio – 20:1
  • Complex intercooler system
  • Low-Pressure Compression Environment

If you would like to learn more about SoftInWay’s integrated platform for axial compressors, please visit our axial compressor page

Leave a Reply

Your email address will not be published. Required fields are marked *