Notable Military Jet Engines

As a special tribute this Veterans Day, we decided to have a look at some of the most notable engines that have been used to propel military vehicles throughout history.

PW F135

Kicking off our list is the Pratt & Whitney 135 turbofan engine. The pride and joy of Pratt & Whitney’s military engine lineup, the 135 powers the US Military’s F35 Lightning II. Presently, two variants of the F135 are used in several different variants of the F35, although it should be noted that the F135 was developed specifically for the F35. The 3 engine variants are known as the F135-PW-100, the F135-PW-600, and the F135-PW-400, each for a different application of the F35. The 100 variant is used in the conventional take off and landing F35A, the 600 is used in the F135B for short take off and vertical landing F35B, and the 400 uses salt corrosion-resistant materials for the Naval variant F35C.

A Lockheed Martin F35A in fight, and an F35C taking off from the USS Abraham Lincoln

The F135 is capable of 28,000 lbf of thrust with the afterburner capability pushing thrust all the way to a whopping 43,000 lbf of thrust, making the Lightning II a supersonic STOVL aircraft suited to a wide variety of applications, as seen in the above illustrations. At the heart of the Pratt F135 are 3 fan stages, 6 compressor stages, and 3 turbine stages. In the STOVL variant, the F135-600 uses the same core components, but is also coupled to a drive shaft which connects the engine to the lift fans which were originally developed by Rolls-Royce, and give the Lightning the ability to hover, perform short distance takeoffs, and vertical landings.

A Royal Air Force RAF F35B Lightning II performing a vertical landing on a Royal Navy carrier.
A Royal Air Force RAF F35B Lightning II performing a vertical landing on a Royal Navy carrier.

The F35 by Pratt & Whitney and in turn the F35 Lightning II by Lockheed Martin represent the cutting edge in military aviation, and are the centerpieces of Pratt and Lockheed respectively. The Lightning variants and this line of turbofan engines will be in service with several branches of the US military and its allies around the world for the foreseeable future, with more iterations of the F135 to come. Read More

Hydrogen Energy: History, Applications, and Future Developments

A Brief History Of The Discovery Of Hydrogen 

The release of combustible gas during the interaction of metals and acids was observed as early as the 16th century. That is, during the formation of chemistry as a science. The famous English scientist Henry Cavendish had studied the substance since 1766, and gave it the name “combustible air”. When burned, this gas produced water. Unfortunately, the scientist’s adherence to the theory of phlogiston (the theory that suggested the existence of a fire-type element in materials) prevented him from coming to the correct conclusions.

Henry Cavendish (1731 – 1810)
Henry Cavendish (1731 – 1810) Source: https://www.butterflyfields.com/henry-cavendish-contributions-in-science/

In 1783 the French chemist and naturalist A. Lavoisier, together with the engineer J. Meunier, and with the help of special gas meters carried out the synthesis of water, and then its analysis by means of decomposition of water vapor with hot iron. Thus, scientists were able to come to the correct conclusions, and dismantle the phlogiston theory. They found that “combustible air” is not only a part of water but can also be obtained from it. In 1787, Lavoisier put forward the assumption that the gas under study is a simple substance and, accordingly, belongs to the number of primary chemical elements. He named it hydrogene (from the Greek words hydor – water + gennao – I give birth), that is, “giving birth to water”.

Antoine-Laurent
Antoine-Laurent
de Lavoisier (1743 – 1794). Source: https://educalingo.com/en/dic-en/lavoisier

A Little About The Properties Of Hydrogen 

In a free state and under normal conditions, hydrogen is a gas, and is colorless, odorless and tasteless. Hydrogen has almost 14.5 times mass less than air. It usually exists in combination with other elements, such as oxygen in water, carbon in methane, and organic compounds. Because hydrogen is chemically extremely active, it is rarely present as an unbound element. Read More

The Top 5 Coolest Turbomachinery Inventions (According to Us!)

As the leading authority on turbomachinery design, redesign, analysis, and optimization, we work with a wide range of machines from small water pumps and blowers to massive steam turbines, jet engines, and liquid rocket engines. While all of these machines have a certain “cool factor” to them since, after all, we’ve proven they make the world go round; some machines take coolness to the next level. Today, we’re taking a look at 5 of the coolest specific turbomachinery inventions, according to us.

Number 5 – The Arabelle Turbines

Starting with number 5, we have a pair of steam turbines, each known as “Arabelle”. You may be asking yourself “So what, steam turbines are everywhere.” You would be right, but these two have a bit of a size advantage. In fact, they’re the largest steam turbines in the world.

Designed and built by General Electric in France, these turbines are, according to GE, “longer than an Airbus 380 and taller than the average man. A pair of them, each capable of producing 1770 megawatts, is now set to cross the English Channel to provide energy for generations” (1).

They’ll be installed in a new nuclear power plant known as Hinkley Point C in Somerset. Their 1.7 gigawatt output will be enough to power 6 million homes, which is 7% of the UK’s power consumption. (1) The output and sheer size of the turbines aren’t the only large number either, the project costs nearly 24 billion US dollars.

A CAD model of the Arabelle steam turbines, image courtesy of General Electric.
A CAD model of the Arabelle steam turbines, image courtesy of General Electric.

The sheer size and performance figures have earned GE a place on our list of top 5 cool turbomachines!

Number 4 – The Garrett 3571VA Variable Geometry Turbocharger

This is one only gearheads and diesel-fans may recognize, but even then, it’s an obscure one. This Garrett turbocharger was a game changer for diesel engines used in light and medium duty trucks, specifically the Navistar International VT365, also known as the Ford 6.0 Liter Powerstroke engine. Read More

Turbomachinery in Racing

While Formula racing is well known for its use of standardized turbocharged V6 engines in all races, they’re certainly not the only races where turbocharged engines are used; and in some cases, the vehicle isn’t even a car! Today’s blog is going to look at turbomachinery in racing, starting with the origin of their usage, and looking at some of the different applications where these machines are found.

As we covered in recent blog, turbocharging has been around since the turn of the 20th century, however its applications was limited for a time to heavy-duty marine applications; high-end cars and trucking; and military aviation. By the 1950’s that had changed thanks to Cummins’ entry in the Indy 500, with their advanced turbodiesel engine raising eyebrows until it catastrophically failed. The point was made though, as Indy banned turbodiesels from the races going forward.  Current IndyCar engine specs call for a 2.2 liter V6 engine that is twin-turbocharged with a fixed boost level. These engines can crank out an astonishing 700 horsepower at full chat, which is around 12,000 RPM. If you’re curious about just how Honda is getting this supercar levels of horsepower out of such an engine, I definitely recommend having a look at the magnificent explanation done by Jason Fenske from Engineering Explained.

On the left #28, the Cummins Diesel special which had the famed turbodiesel engine, and on the right, the 2.2L Honda IndyCar engine. Images courtesy of Truck Trend and Engineering Explained respectively.

We’ll circle back to turbocharged road racing in a moment, but let’s talk about jet engines and the H1, first. Started in 1946, H1 Unlimited is a racing league where teams compete using hydroplanes (not to be confused with the extremely dangerous condition that occurs on wet roads). These hydroplanes rely on lift as opposed to their buoyancy to maintain high speeds and maneuverability. After World War II, the surplus of aircraft engines like the famed Rolls-Royce Merlin V12, discussed in an earlier blog, found their way into these high speed watercraft.

The Lycoming T55 turboshaft engine, powering everything from Chinooks, to race boats. Left image courtesy of Mr. Z-man

In modern times however, H1 Unlimited has now standardized the engines used in competing hydroplanes, and all craft must now use the Lycoming T55 turboshaft engine, which was originally used in the famed Boeing CH47 Chinook helicopter.

Read More

Gas Turbine Cooling System Design Procedures

Introduction

State-of-the-art gas turbine engines usually work under extremely high temperatures. This is directly related to efficiency of the gas turbines – in order to receive the maximum thermodynamics value, it is necessary to increase the gas temperature after the combustion chamber. Engine temperature can be higher than blades’ metal temp up to 500-600 K. Blades, nozzles, and the GT details are manufactured with special heat-resistant steels and in some cases, they require a special coating. That allows them to resist turning into liquid metal under these working temperatures like the T-1000 did in the “Terminator 2: Judgment Day” movie even under high temperatures :).

Picture 1 – T-1000 from Terminator 2
Picture 1 – T-1000 from Terminator 2. Source

However, metal has the property of “creep” – this is the tendency of hard metal to move slowly or permanently deform under stress. This occurs as a result of prolonged exposure to high stresses above the yield point, especially when exposed to high temperatures. Obviously, the solution to this problem is a cooling system for heat-stressed parts, which has allowed the gas temperature to increase by 600 K compared with uncooled machines. Since the gas turbines usually work with air, the simplest way to cool the system is by using this. Typically, the air exhausts to different parts of the compressors and is supplied to the cooling paths and blades which influence the thermodynamics efficiency of the gas turbine engine. Thus, it is crucial to ensure enough cooling to remove the heat on the one hand and on the other hand – to receive the lowest amount of air which requires cooling. Read More

Aircraft Life Support Systems Part 2: Water and Waste System

INTRODUCTION

In the aircraft industry, several systems are designed to provide safety and comfort for the crew and passengers.

Regarding comfort, the water and waste system is designed to provide water for galleys and lavatories. Fresh water is stored and distributed while a different system deals with wastewater. That system includes a thoughtful engineering method to dispose of the different wastes that could occur during the flight.

OVERVIEW

Water must be supplied to different parts of the plane during flight. This water is kept in a tank in the compartment aft of the bulk cargo compartment. The whole system is made up of a passenger water system that stores, delivers, monitors and controls drinkable (potable) water for the galley units and lavatory sink basins.

In this blog, we are going to focus more specifically on the 737-classic model from Boeing.

Figure 1-Representation of different parts of the water and waste system
Figure 1-Representation of different parts of the water and waste system

The 3 main achievements of the water and waste system are the following:

  • Filling the water tank on land
  • Providing water during the flight
  • Storing toilet waste

­

The water and waste system is made up of:

  • Potable water system aims to deliver fresh water to every needed part in the plane (including every component between the water tank and sinks)
  • Water tank pressurization system focuses on the pressurization of the water tank and air dealing with the tank (including air compressor, pressure regulator filter, pressure relief valve)
  • Wastewater system focuses on water related to lavatory and sinks / galleys wastewater (including drain masts)
  • Toilet system includes components related to flushing and toilet water (including waste tank)

­

The water tank has a capacity of 34 gallons (about 0.15 m3). The water system in the plane needs to be pressurized for altitude just like the cabin, so it gets pressurized by an air inlet (linked to the pneumatic system). Therefore, the water quantity should not exceed 30 gallons (about 0.13 m3). Read More

Aircraft Life Support Systems Part 1: Oxygen System

INTRODUCTION

In the aircraft industry, several systems are designed to provide safety and comfort for crew and passengers while traveling. Oxygen gets rarified with altitude, so life support is a very important system

The cabin is pressurized in order to provide breathable air, but reaching a sea level pressure is not advisable since it would lead to a significant pressure differential between the aircraft exterior and the cabin interior. This difference could damage the aircraft structure.

Additionally, the cabin altitude is different from the flight altitude. In fact, the cabin altitude corresponds to the one reached according to the cabin pressure. Usually a commercial flight cruises at an altitude of 35,000 ft, but thanks to the pressurization system, the cabin altitude is around 6,000-8,000 ft.  Indeed, the oxygen system provides breathable oxygen to the crew and passengers if any problem were to occur during the flight.

AIRCRAFT EMERGENCY OXYGEN SYSTEM:

In a normal situation, a bleed air system is used to provide fresh air throughout the flight duration. The air is hot and must be cooled and pressurized to make it breathable.  In the event of an emergency, the plane is already equipped with oxygen systems which are linked to passengers and cabin crew through masks. In fact, there are two oxygen systems on board. One designed for the crew, and the second for the passengers.

If the cabin pressure drops making cabin altitude about 14,000 ft, the emergency system are be triggered. The emergency system provides oxygen to passengers for 15 to 20 minutes, and for the crew members for around 30 minutes. This is enough time for the aircraft to descend to a lower altitude and being the cabin altitude to a safe breathable level.

Here, the crew oxygen system schematic of the Boeing 737 class is shown in Figure 1.

Figure 1-Crew oxygen system
Figure 1-Crew oxygen system

The main challenges of oxygen equipment are:

  • Fitting the dimensions of the plane
  • Secure (no leakage for example)
  • Responsive (to cabin pressure and cabin altitude)
  • Easy for passengers to use the oxygen system through the deployed masks quickly, before the effects of altitude are felt:
  • At 25,000 ft: a person has 3 minutes of consciousness
  • At 41,000 ft: a person has 30 seconds of consciousness

­

FLIGHT CREW OXYGEN

The flight crew oxygen should be designed and made with a lot of care, because if any trouble occurs during the flight, the crew must be able to handle the situation and take the airplane and its passengers down safely. Read More

Performance Testing of Axial Compressors

Performance testing is a key part of the design and development process of advanced axial compressors.  These are widely used in the modern world and can be found in nearly every industry, and include the core compressor for aeropropulsion turbofan engines, as well as aeroderivative gas turbine engines for power generation.  An example of this are the turbine engines shown in Figure 1 and 2, which feature an industrial gas turbine and a high bypass ratio turbofan engine with a multistage high-pressure core compressor. The development time of these machines can involve numerous expensive design-build-test iterations before they can become an efficient and competitive product. This places a great importance on the accuracy of the data taken during the performance tests during the development of the compressor since the test data taken is often used to anchor the loss models within the design tools. Modern axial compressors typically have high aerodynamic loadings per stage for improved system efficiency and requires precise aerodynamic matching of the stages to achieve the required pressure ratio with high efficiency. Variable geometry inlet guide vanes and stators in the first few stages are typically required to provide acceptable operability while maintaining high efficiency and adequate stall margin.

Industrial gas turbine for power generation.
Figure 1. Industrial gas turbine for power generation. Source
Figure 2. Turbofan engine for aeropropulsion.
Figure 2. Turbofan engine for aeropropulsion. Source

Performance Testing of Axial Compressors

Axial compressors all undergo a thorough design and development phase in which performance testing is vital to their ultimate success as a product. Performance testing during the development phase of these high-power density machines can ensure that the design meets the specified requirements or can identify a component within the turbomachine which falls short of its expected performance, and may require further development, and possible redesign. Performance testing can also ensure that the unit can meet all the conditions specified and not merely the guaranteed condition. Aerodynamic performance testing multistage axial compressors during the early part of development is often done in phases. The development test program is planned and executed with a design of experiments approach and includes varying the air flow and shaft rotational speed as well as the variable geometry schedule in order to fully characterize the compressor. In the first phase, the front block of the compressor is built and tested at corrected (referenced) air flow rate, inlet pressure, temperature and shaft rotational speed. Instrumentation includes utilizing traditional rakes and surveys at the exit, to obtain spanwise distributions of pressure, temperature, and flow angles. Testing in phases is typically done for two reasons. Read More

The History of Turbochargers, Part 2

Hello! And welcome back for part 2 of our series on “A Brief History of the Turbocharger”. To read part 1, which compares superchargers and turbochargers, and explains the early history of turbochargers and forced induction from the turn of the century through to World War 1, click here. Having covered all of that, let’s pick up from where we left off!

Following World War 1, and the work of Dr. Sanford Alexander Moss, Alfred Büchi, who had created the first true turbocharger, had continued innovating following the failure of his first design. By 1925, he had a working turbocharger design that consistently and reliably worked (1).

Following this breakthrough, the turbocharger saw its first commercial application on ten-cylinder diesel engines. Since diesel engines are typically built to withstand the high-pressures required by their operating conditions, the pressures generated by using forced induction are easily accommodated. As a result of adding the turbochargers, the engines upped their horsepower ratings from 1750HP, all the way to a whopping 2,500HP. (1)

The Hansestadt Danzig, one of the German ships fitted with the 10 cylinder turbodiesel engine described above
The Hansestadt Danzig, one of the German ships fitted with the 10 cylinder turbodiesel engine described above. (shipspotting.com)

For Büchi, this was a great achievement, as it marked the first commercial application of a machine that he had first begun working with more than 20 years prior. For the turbocharger, however, this was just the beginning. Read More

Anti-Icing Systems in Airplanes: Boeing 737-300/400/500

Through the decades, the aircraft industry always improved their onboard systems to get the best performances, security and comfort. In order to build a lasting travel type, security of the aircraft is one of the main goals for engineers. Due to rough exterior conditions while flying, especially at high altitude, with relative humidity and very low temperatures, the freezing temperature can cause the plane to ice. Ice can have major impacts on the aircraft’s weight and aerodynamical phenomena, – especially the lift – (the lift can decrease to 40% due to ice). Modeling and installing a specific system to prevent ice is a necessity. Therefore, aircraft designers developed an anti-icing system inside the wing to prevent ice.

There are several anti-icing systems on aircraft, mostly depending of the engine’s type. Most of aircrafts use the bleed air system, which consists of using a hot bleed air to warm up the wing leading edge. Another system named de-icing boots system is mostly used on turboprop aircrafts and consists of black rubbers at locations prone to icing which inflate and literally break the ice. Another system is simply an electrical leading edge warm up directly installed in the wing leading edge. Those examples are just an introduction to some anti-icing systems that aircraft industry has develop and are using. Each have pros and cons.

Here, we will focus on the anti-icing system using hot bleed air. This approach is used by the Boeing 737-300/400/500 anti-icing system with hot bleed air warming the leading edges.

Typically, this type of anti-icing system consists of a hot bleed air flow provided by the engine compressor’s stages to warm up the plane’s wing leading edge. The wing anti-icing system is made of two independent pneumatic systems among others, providing hot bleed air from each of the two turbofans separately. The hot bleed air is ducted via the engine bleed valve from the fifth compressor stage. If the pressure isn’t enough, bleed from the ninth compressor stage can additionally be used. Note that the fifth stage bleed air temperature is approximately 340°C and the ninth stage one is approximately 540°C which are too hot to be used in aircraft’s pneumatic systems such as hydraulic pressurization or potable water system pressurization for example. The hot air then runs through a pre-cooler to reduce the temperature to 200°C and this cooled air is distributed via the bleed ducts to consumers like the air conditioning packs for example and the wing anti-icing system. In order to know the moment to use the anti-icing system, the aircraft’s pilots use the visual ice indicator which is situated in the middle beam of the window. Once the probe is icing, the pilots enable the anti-icing system. Hence, hot bleed air is provided to the slates number three, four and five as shown in Figure 1.

Landing Edge Slats
Figure 1 – Leading Edge Slats

Due to the larger diameter and the aerodynamics phenomena, slates number one and two do not need any anti-icing devices. Once the anti-icing system is enabled, the hot bleed air is guided along telescopic pipes then is distributed via piccolo tubes as shown in Figure 2. From there, it exits the piccolo tubes through little holes, warms the wing leading edge and flows out of the wing through exit holes situating on the wing’s lower surface. Read More