A Brief History of the Turbocharger – Part 1

Turbochargers are one of the more common turbomachines out there today! As everyone is making efforts to lower carbon dioxide emissions in automobiles, and the automotive OEMs engage in a “horsepower war”, the turbocharger will likely continue to grow in popularity for both civil and commercial uses.

But how did these machines get so popular? That’s what we’ll be exploring in this blog miniseries! Today’s blog will introduce the concept of the turbocharger, and the beginnings of its development around the turn of the 20th century.

Turbocharging engines and the idea of forced induction on internal combustion engines are as old as the engines themselves. Their intertwined history can be traced back to the 1880’s, when Gottlieb Daimler was tinkering with the idea of forced induction on a “grandfather clock” engine. Daimler was supposedly the first to apply the principles of supercharging an engine in 1900, when he mounted a roots-style supercharger to a 4-stroke engine.

The birth of the turbocharger, however, would come 5 years later, when Swiss engineer Alfred Büchi received a patent for an axial compressor driven by an axial turbine on a common shaft with the piston of the engine. Although this design wasn’t feasible at the time due to a lack of viable materials, the idea was there.

Turbochargers vs Superchargers

What idea was that, exactly? And how did it differ from supercharging?

I think it’s important to quickly go over the basic differences between turbocharging and supercharging. Both offer “forced induction” for piston engines. A naturally aspirated engine simply will draw in atmospheric air as the intake valve opens, and the piston travels down to bottom dead center. A forced induction engine, pushes more air into the cylinder than what the dropping of the piston would pull in, allowing more air to be combusted, and thus generating more power and efficiency. While turbochargers and superchargers are both forced induction , how superchargers and turbochargers go about compressing that air is different. Superchargers are driven by the engine themselves, typically via a belt or gear. This uses some of the engine’s available horsepower, but doing so provides more horsepower back to the engine. The compressors can be either positive displacement configurations (such as a Roots or Twin-Screw), or a  centrifugal supercharger.

supercharger configurations
A very helpful image of the 3 kinds of superchargers, courtesy of MechanicalBooster.com

Turbochargers, as mentioned before, use the air from the exhaust of the engine to drive a turbine, and the work of the turbine is transmitted on a common shaft to a compressor. The most common configuration is a radial turbine driving a centrifugal compressor similar to the one above in the supercharger diagram. However, there are other configurations ,seen in larger examples, such as an axial turbine driving a centrifugal compressor. Read More

Aircraft Fuel Systems

The airplane is a complex technical object. Like a human or other organisms, it consists of numerous vital systems; with one of the more critical ones being the fuel system. It is important part of any vehicle, let alone aircraft, aside from  the newest electric powered vehicles.

An aircraft’s fuel system provides fuel that is loaded, stored, managed and transported to the propulsion system of the vehicle[1, 2]. As aviation fuel is liquid, this system can be considered as hydraulic. Therefore, it’s able to be mapped out and modeled for analysis in a program like AxSTREAM NET™.

The Typical Fuel System of a Narrow-body Passenger Plane

For an example of a conventional aviation fuel system, consider a typical narrow-body airliner with two engines. Some of the popular planes in this category include the Boeing 737, the Tupolev Tu-204, Airbus A320, Comac C919, Sukhoi Superjet 100, Bombardier CRJ, Embraer E-Jet and Mitsubishi Regional Jet[3].

The storage fuel system is shown in figure 1 is for the Boeing 737-300. The fuel is kept in an integral tank that is divided to five separate subdivisions. They are the central, wing (main) and surge tanks[4].

Storage fuel system of a Boeing 737
Figure 1 – Storage Fuel System of a Boeing 737-300 [4]
The hydraulic scheme of the Boeing 737’s fuel system is shown in Figure 2. For fueling and defueling the storage system there are ports on the starboard wing. The system does not have pumps to onboard fuel, so fuel is pumped into the plane via a fuel truck. The other critical part of the fuel system is the line which delivers fuel to the two engines and the auxiliary power unit. In this line there are two boost centrifugal pumps by each engine.
Read More

It’s Rocket Science – and it’s Dangerous!

Rockets have always fascinated us and to this day a rocket launch is still a global news event worth watching. The sheer noise, power and sight after you hear that “…3-2-1, Lift off!” leave us in awe. A masterpiece of engineering, the recent historic manned SpaceX Falcon 9 launch was no exception. Or was it?

The beginnings

From the outside, a rocket does not look especially advanced – a mere ‘stick’ with a big flame shooting out at one end. The principal concept is simple, too, but the inner workings of a modern liquid-fuel rocket are highly complex.

The first rockets are believed to have existed in China, around 1200. The invention of gunpowder was crucial to the development of these primitive rockets, which were fireworks initially and then weapons. Multistage so-called ‘fire arrows’ were documented during the early Ming Dynasty (Figure 1). The designs were based on bamboo sticks – still a little way off a Falcon 9.

Figure 1: The oldest known depiction of multistage rocket arrows, from 14th-century China. The top arrow reads ‘fire arrow’, the middle ‘dragon-shaped arrow frame’, and the bottom’complete fire arrow’. Source

With the rise of gunpowder, this crude rocket technology spread throughout the Middle East and Europe.

The next rocketry milestone came in the 1780s, when the Indian military developed Mysorean rockets with iron castings and successfully deployed them against the British East India Company. Read More

Engineering Luke Skywalker’s X-34 Landspeeder

Today, landspeeders we look at!

Introduction

Landspeeders belong to the “repulsorlift” transport class, like the podracers we looked at last year, and travel above a world’s surface (up to 2 meters) without contact (very useful on swampy lands like Dagobah). Landspeeders are the successors to the hanno speeder which was mainly used as a racing vehicle with many Tatooine natives still using them to race in the Boona Eve Classic today.

Luke Skywalkers Soro Suub Corporation X-34 landspeeder
Figure 1:  Luke Skywalker’s Soro Suub Corporation X-34 landspeeder from the 1977 film – Note, the Soro Suub Corporation was your main go-to landspeeder designer and manufacturer before and during the reign of the Galactic Empire even though it specialized mostly in mineral processing. Image source

Landspeeders are found in both civilian and military applications but due to intergalactic ITAR regulations we will only cover the civil aspect here with a focus on the most famous of them all. If you want to know more about our experience working with military, defense and governmental organizations (whether you area part of the Empire, Rebels, Resistance or Separatists) feel free to contact us.

The Famous X-34

Luke Skywalker’s X-34, with its 6 selectable hover heights, features an engine consisting of 3 air-cooled thrust gas turbines able to reach a top speed of about 155 mph. The side engines are also used for steering although it is not obvious whether this steering is achieved by varying their thrust to be asymmetric or through vectoring of their exhaust. With the X-34 total length being 3.4 meters it helps us estimate the overall dimensions of its engines which are, each, roughly 80 cm long by 30 cm wide. Read More

An Introduction to Shock Waves

When you think of shock waves, I would wager that you picture a supersonic jet zooming past overhead. Or maybe you have experienced the famous (or infamous) “sonic boom” that accompanies shock waves attached to airplane engines. The engineering challenges associated with the often-troublesome behavior of shock waves is present in all scales, from carefully designing the bodywork of the aforementioned fighter jets, to the equally intricate details of flow passages and blade design in turbomachinery. The first step in taking into account the effect of shock waves is to understand what they are. In this post we will be reviewing a short introduction into what shock waves are and a few applications where they might be relevant.

Figure 1: Schlieren image showing the shock waves of a supersonic jet
Figure 1: Schlieren image showing the shock waves of a supersonic jet. Source

What are shock waves?

Shockwaves are non-isentropic pressure perturbations of finite amplitude and from the second law of thermodynamics we can say that shockwaves only form when the Mach number of the flow is larger than 1. We can distinguish between normal shocks and oblique shocks. In normal shocks, total temperature is constant across the shock, total pressure decreases and static temperature and pressure both increase. Across oblique shocks, flow direction changes in addition to pressure rise and velocity decrease. Read More

Micro Gas Turbines in the Aerospace Industry

Previous Blog  Next Blog

Hello and welcome to the next entry in our series on micro gas turbines! If you’re new to this series, be sure to check out our earlier blog where we: introduce the concept of the micro gas turbine; look into the history of it; and discuss some advantages and disadvantages that come with this technology.

This time, we’ll be looking at micro gas turbines in the Aviation industry (if you couldn’t guess by the title). Believe it or not, the concept and configuration of a micro gas turbine has been present in this industry for decades. We’ll get into that in a minute.

Gas turbines are certainly no stranger to the aviation industry. As a matter of fact, when many of us hear the term “gas turbine” we immediately jump to the image of a jet engine powering a massive airliner carrying us to our next adventure.

Engine of airplane
The Mighty Turbofan Engine; Brought about with thanks to Sir Frank Whittle!

Yes, these mighty turbines are indeed a staple in the aerospace industry.  But did you know that micro gas turbines are also making a rise in this industry?

Although micro gas turbines first made an appearance as an alternative to traditional piston engines in the automotive industry, they have actually been present in the aviation industry for some time.

Read More

The Life of Frank Whittle and His Massive Contribution to Turbomachinery

While we at SoftInWay are known for helpful articles about designing various machines and answering questions about the pros and cons of retrofitting your turbomachinery and powerplants, we believe it is important to also examine the lives of some of the men and women behind these great machines that do so much for the world.

Frank Whittle - Image Courtesy of The Telegraph
Frank Whittle – Image Courtesy of The Telegraph

The jet engine is one of the greatest inventions of the last 100 years. It has made transcontinental travel considerably shorter. A trip that might take days on a piston driven aircraft was cut down to hours thanks to the inception of the jet engine. To this day, millions of people rely on jet engines daily for everything from themselves for vacation travel to their packages for shipping goods overnight. These engines also give the U.S. military the ability to deploy to any part of the world within 18 hours.

But who invented the jet engine? This credit changes depending on who you ask.  Some might answer it was Hans von Ohain.  To others, this credit belongs to Sir Frank Whittle, OM, KBE, CB, FRS, FRAeS, RAF.

Why the discrepancy? von Ohain is known for creating the world’s first operational jet engine, and Whittle is credited with developing the turbojet earlier. While von Ohain’s first engine was the first to fly operationally in 1939, Sir Frank Whittle had been working on his design since the 1920’s. Today, we’d like to look at the life of Sir Frank Whittle, and how he created this world-changing machine. Read More

Series on Micro Gas Turbines And How They Can Make the World Greener

Next Blog

If you’re familiar with turbomachinery, then you probably know the pivotal role they play in our lives. If you’re not, no biggie! Have a look at this blog where I discuss a world without turbomachinery. But where do microturbines fit in? I can’t speak for anyone else, but my mind immediately jumps to turbochargers in small-displacement car engines. There is, however, a whole slew of information, history, and applications for microturbines beyond being a component in your car.

The best place to start, is to establish just what a microturbine is and isn’t. Granted the prefix in the word is a dead giveaway, but just how small is a micro gas turbine?  In terms of power output, a micro gas turbine puts out between 25 and 500 kW. The size of these machines varies; some systems can be the size of a refrigerator, while others can fit on your desk. For reference, some of these machines are smaller than your average corgi!

Micro Gas Turbine and Corgi
Figure 1: A micro gas turbine with a pencil for scale (left) and your average corgi (right). Not very aerodynamic, but awfully cute. Source

In terms of components, microturbines typically consist of a compressor, combustor, turbine, alternator, generator, and in most machines, a recuperator. While incorporating a recuperator into a microturbine system comes with its own set of challenges, the benefits are often well worth it as efficiency when recuperated hovers around 25-30% (with a waste heat recovery/cogeneration system, efficiency levels can reach up to 85% though).

Figure 3: A commercial airliner's turbofan engine the common image that is conjured when one thinks of turbines in transportation
Figure 3: A commercial airliner’s turbofan engine; the common image that is conjured when one thinks of turbines in transportation.
History

When and how did the concept of micro gas turbines come about? After the advent of the jet engine in World War II and the prominence of turbochargers being used on piston-driven propeller planes during the war, companies started to see where else gas turbine technology could be utilized. Starting in the 1950’s automotive companies attempted to offer scaled down gas turbines for use in personal cars, and you can read our blog covering that more in-depth here. You can probably guess by the number of gas turbine-powered cars on the road today, that it wasn’t very successful.

Fast forward to the 1970s, companies started to take an interest in micro turbines for stationary power generation on a small, portable scale. Allison developed microturbine-powered generators for the military that showed substantially lower fuel consumption in initial testing. In the 80’s, GRI supported the AES program where they attempted to develop a 50kW turbine for aviation applications, using a heat recovery system to improve efficiency through a cogeneration system. More recently, companies like Capstone have worked with GRI on new projects to introduce microturbines to different industries where they could be useful, using the latest advancements in technology to ensure higher efficiencies and reliability of designs past. To discuss the current state of affairs for microturbines however, it might be good to list some of their present advantages and drawbacks, and then explore where in the world they could be most useful.

Micro Turbine Compressor
Figure 4: A micro turbine compressor model.

 

Advantages and Disadvantages of Microturbines

As with just about any other type of technology, microturbines have their own set of advantages and disadvantages as a result of their design that are seen in their different applications.

Advantages: 

  • – Lower emissions
  • – Lower noise level than comparable reciprocating engines
  • – Fewer moving parts with results in less maintenance needs
  • – Lower vibration levels
  • – Ligherweight, compact systems
  • – Diverse fuel selection (jet fuel, kerosene, diesel, natural gas)

­

Disadvantages:

  • – Very low efficiency without recuperator/waste heat recovery system
  • – High work requires high speeds (30-120 krpm) for small diameters
  • – Poor throttle response
  • – Expensive materials required for manufacturing
  • – More sensitive to adverse operating conditions

­

A Micro Gas Turbine
Figure 5: A Microturbine
Potential Transportation Industry Applications

There are a number of different industries which microturbines can be found both in and outside of the transportation. Throughout the upcoming months, we’ll be taking a closer look at:

  • – The Aviation Industry
  • – The Automotive Industry
  • – The Marine Industry
  • – The Rail Industry

­

Each of these industries has at least one application where micro gas turbine technology has the potential to conserve fuel and lower emissions without compromising power. In the next entry, we’ll look at the current state of the aerospace industry and where/how micro gas turbines can improve upon existing technology.

If you want to learn more about designing a micro gas turbine, or about the tools our engineers and thousands of others around the world rely on for their turbomachinery designs, reach out to us at info@softinway.com

Next Blog

Oxygen Life Support Systems in a Spacecraft

Introduction

Looking into the very near future, tourists traveling into space no longer seems like some fantastic science fiction. The Blue Origin and the Mojave Aerospace Ventures companies are ready to operate their respective manned suborbital spacecrafts in the coming year[1]. While, The Boeing Company and the SpaceX are finishing the certification of their crewed spacecrafts to deliver people at the Low Earth Orbit. This is only the tip of the iceberg in the great competition.

The next ambitious goal of the space industry is to create space hotels (see Figure 1). For example, NASA already has announced opening the ISS for tourists. These objects are long term human habitations and as such have specific requirements for oxygen life support systems (OLSS). If these requirements are not met, people can die. Small variations in the chemical composition of a mixture of the gases all influenced by, pressure, temperature, a humidity and etc.[2]  can have disastrous effects. The work of some of these partial system can be analyzed and optimized using AxSTREAM NET™.

Figure 1 - The art image of the Aurora Space Hotel
Figure 1 – Art Image of the Aurora Space Hotel[3]
Types of life support system of a spacecrafts

The type and complexity of OLSS depends on the duration of the tourists staying in the artificial environment. For example, let’s consider the oxygen life support systems. A hypothetical manned spacecraft has an internal volume 15 m3 (530 ft3) and can carry six space tourists. The amount of the oxygen for the metabolism of one person is 0.830 kg/day[4] (Figure 2). The atmosphere should consists of 19.5 to 23.5 % of an oxygen[5]. Also, the amount of the reserve oxygen should be 0.035 kg (0.077 pounds) per human/hour. If our six space tourists start their journey with the environment gas in the craft at 23.5 % of the oxygen , it will take 3.5 hours to reach critical level. It’s enough time for a suborbital flight, and the oxygen life support system would only be needed as a reserve source. Read More

Thermal Management in Aerospace Electric Propulsion Systems

The growing interest towards electric propulsion system for various applications in aerospace industry is driven first by the ambitious carbon emissions and external noise reduction targets. An electric propulsion (EP) system not only helps reduce the carbon emissions and external noise, but also helps reduce operating cost, fuel consumption and increases safety levels, performance and efficiency of the overall propulsion system. However, the introduction of electric propulsion system leads engineers to account for certain key challenges such as electric energy storage capabilities, electric system weight, heat generated by the electric components, safety, and reliability, etc. The available electric power capacity on board may be one of the major limitations of EP, when compared with a conventional propulsion system. This may be the reason electric propulsion is not the default propulsion system. Now, let’s consider how electric propulsion is used in the aerospace industry. Following the hybridization or complete electrification strategy of the electric drive pursued on terrestrial vehicles, the aerospace industry is giving great attention to the application of electrical technology and power electronics for aircrafts.

Figure 1 Aircraft Electric Propulsion Architectures
Figure 1. Aircraft Electric Propulsion Architectures. SOURCE: [1]
Electric Propulsion in aircrafts may be able to reduce carbon emissions, but only if new technologies attain the specific power, weight, and reliability required for a successful flight. Six different aircraft electric propulsion architectures are shown in Figure 1, above, one is all-electric, three are hybrid electric, and two are turbo-electric.  These architectures, rely on different electric technologies (batteries, motors, generators, etc.).

Read More