Turbomachinery Design Strategies & Tips: How to Choose Between an Axial or Radial Configuration

From the electricity that charges our phones to the jet engines that propel airplanes across the sky, turbines can be found powering our modern world in various forms and configurations.  These mighty machines are the silent heroes of our energy infrastructure, found in everything from locomotives and power plants to industrial machinery and rocket engines. But what distinguishes one turbine from another? How do engineers decide on the design and configuration of these mechanical marvels? This intricate task requires an understanding of turbomachinery design, including axial and radial configurations. So, let’s dive into the differences between an axial and radial configuration.

Fig.1 Example of an axial turbine used in a jet engine. Source

In an axial turbine, the fluid (such as steam, gas, or water) flows along the rotation axis, similar to a windmill where the fluid enters and exits in the same direction. The turbine blades are arranged in stages along the rotor, with each stage converting the fluid’s energy into mechanical energy. Read More

Nuclear Power Reactors: A Vital Energy Source Part 2

Part 1 

Now that we understand what a nuclear reactor is, why it is used, and how it works (covered in part 1), let’s take a deeper dive into the different types of nuclear reactors, their benefits and limitations, and strategies to design and model nuclear reactor cycles using AxSTREAM System Simulation.

Types of most commonly used nuclear reactors:

There are several types of nuclear power reactors available worldwide. Based on their design, they use uranium with different concentrations as fuel, moderators to delay the fission process, and coolants for heat transfer. However, the most commonly used nuclear reactors are pressurized water reactors (PWRs) and boiling water reactors (BWRs). PWRs dominate the global nuclear fleet with 301 units comprising 66% of all nuclear power plants in operation [6], followed by BWRs at 16% with 72 units, and all other types of reactors accounting for the remaining 18%.

Pressurized water reactors (PWRs):

PWRs were designed and implemented commercially sooner than BWRs due to the earlier notion that pressurized liquid water would be much safer to handle than steam in the reactor core and would add to the stability of the core during operation. That is why the first commercial reactor in Shippingport was a PWR. Figure 4 shows a schematic design of a typical PWR plant.

Figure 4. Schematic Diagram of a Pressurized Water Reactor Power Plant. SOURCE
Figure 4. Schematic Diagram of a Pressurized Water Reactor Power Plant. SOURCE: [7]
A PWR plant consists of two separate light water (coolant) loops, primary (nuclear part) and secondary (conventional portion) as shown in Figure 4. PWRs use ordinary water as both coolant and moderator. The PWR primary loop works at an average pressure of 15 to 16 MPa, with the help of a set of pressurizers, so the water does not boil even at a temperature of 320 to 350 ℃ in the reactor. The heat from the primary water (nuclear part) transfers to the secondary water (conventional part) in the steam generator (Figure 4). There, secondary water converts into steam which drives the turbine to generate electricity. The core water cycles back to the reactor to reheat, repeating the process. Read More

Nuclear Power Reactors: A Vital Energy Source Part 1

Part 2 


There is no doubt that energy has been driving and will drive the technological progress of human civilization. It is a vital component for economic development and growth, and thus our modern way of life. Researchers project that the world energy demand will almost double by 2040 (based on energy usage)[3], which must be met by utilizing energy sources other than fossil fuels such as coal and oil. Fossil fuel power generation contributes to significant greenhouse gas emissions into the atmosphere and influences the climate change trend. Although several research and development programs (for example, carbon sequestration and ultra-supercritical steam turbine programs) have been initiated to make fossil power generation much cleaner, more is needed to fend off the bigger problem. Therefore, many countries worldwide have recognized the importance of clean (i.e., emission-free) nuclear energy, and there are proven technologies that are more than ready for deployment. Nuclear power can solve the energy trilemma of supplying clean and affordable base-load power.

Figure 1. Nuclear Power Plant Cooling Tower
Figure 1. Nuclear Power Plant Cooling Tower

The use of nuclear energy for power generation varies widely in different parts of the world.  About 454 nuclear power reactors currently supply more than 10% of the world’s electricity, operating at a high capacity factor of 81% (world average)[1]. Thirty-one countries use nuclear power plants, with 70% of the world’s nuclear electricity generated in five countries – the USA, France, China, Russia, and South Korea. As such, many other countries have tremendous opportunities for nuclear energy growth. Today the average age of the operational power reactors stands at 30 years, with over 60% of all nuclear power plants having operated for more than 31 years[1]. Hence, nuclear power reactors are an essential energy source that has been providing electricity to millions of people worldwide. Despite the controversy surrounding nuclear power due to the risk of radiation exposure, nuclear reactors have proven to be a reliable, efficient, and emission-free source of electricity generation. Nuclear reactors have been built for the primary purpose of electricity production, although they are used for other applications such as desalination, radioisotope production, rocket propulsion, and much more. A view inside the Olkiluoto 2 nuclear reactor vessel is shown in Figure 2. Read More

Modifying Gas Turbines to Burn Hydrogen Fuel

Hydrogen fuel and renewable energy are becoming increasingly relevant in the gas turbine industry as the world shifts towards decarbonization. Hydrogen fuel, in particular, is seen as a promising alternative to traditional fossil fuels due to its clean-burning properties. As a result, many gas turbine manufacturers are exploring ways to modify existing engines to run on hydrogen or hydrogen mixtures. Additionally, the use of renewable energy sources such as wind and solar power to generate hydrogen fuel is gaining traction, providing a sustainable solution for the gas turbine industry. These developments are crucial in reducing carbon emissions and meeting climate goals, making hydrogen and renewable energy an essential focus for the future of the gas turbine industry.

In light of these developments, one of the key methods to achieve decarbonization is to use a mixed renewable gas (e.g., green hydrogen, biogas, syngas) or pure hydrogen (in the future) as a fuel for stationary gas turbine engines (GTE) that generate electricity.

Figure 1: Heavy Duty Gas Turbine, AE94.3A (Ansaldo Energia) [1]
The main advantage of this method is that companies need not design and manufacture fundamentally new engines for hydrogen combustion. Instead, modifying the existing GTE fleet is sufficient. Another benefit of introducing hydrogen gas turbine technology is the possibility of using idle or underutilized equipment, thereby providing a new lifecycle. Read More

An Overview of Brayton Cycles

The open Brayton cycle is commonly used in gas turbine engines for power generation, aircraft propulsion, and industrial processes. The Brayton cycle, named after American engineer George Brayton, who proposed it in 1872, converts fuel energy into mechanical work. The Brayton cycle became widely used in practical applications following the development of the gas turbine in the 1930s. Gas turbines were used extensively during World War II, and their efficiency and reliability improved significantly.

The Brayton cycle has numerous advantages for energy applications. For one, engineers can design it compactly, making it a strong fit for tight enclosures. With gas turbines being a common engine driver, the Brayton cycle is popular in modern applications. Since Brayton cycle engines are particularly efficient in gas turbine engines, they are useful for power generation, aircraft and marine propulsion, industrial processes, and more.

Additionally, Brayton cycle motors produce few emissions thanks to their efficient exhaust gas treatment systems, making them a greener choice than other fossil fuel systems. Coupled with their high efficiency from the isentropic compression and expansion processes that minimize energy loss, engineers continue to develop Brayton thermodynamic cycle systems to this day.

There are two main types of a Brayton cycle: open and closed. In an open Brayton cycle, the working fluid is continuously supplied to and exhausted from the system, and the process operates in an open loop. On the other hand, in a closed Brayton cycle, the working fluid is contained within the system and circulates in a closed loop. The schematics of a simple open-cycle gas turbine utilizing an internal-combustion process and a simple closed-cycle gas turbine using heat transfer processes are both shown in figure 1.

Figure 1 - Open cycle (left) and closed cycle (right) for operating a Brayton cycle
Figure 1: Open cycle (left) and closed cycle (right) for operating a Brayton cycle (https://web.mit.edu).

An ideal Brayton cycle consists of the following four processes:

  1. Isentropic compression: air is compressed to high pressure and temperature via an isentropic process that is adiabatic and reversible.
  2. Constant pressure heat addition: high-pressure air is fed into a combustion chamber where fuel is added and ignited.
  3. Isentropic expansion: high-temperature gases from the combustion chamber expand in the turbine in an isentropic process, producing mechanical work.
  4. Constant pressure heat rejection: the exhaust gases are expelled into the atmosphere.

Read More

Common Design Challenges in Compressed Air Energy Storage Systems

Renewable energy is a topic which has gained significant traction in recent years. Unlike fossil fuels, which are finite and contribute to environmental degradation, renewable energy provides a cleaner, healthier, and more sustainable path forward for meeting our energy needs. Energy storage systems refer to technologies that store energy for later use, allowing for a more flexible and reliable energy supply from renewable sources such as solar and wind.

There are a wide variety of energy storage systems that enhance the power generation capabilities of renewable power plants. The most familiar system may be hydropower, with over 95% of today’s energy grid storage being held by pumped hydropower. When electric demand is low, “turbines pump water to an elevated reservoir using excess electricity. When electricity demand is high, the reservoir opens to allow the retained water to flow through turbines and produce electricity” [5]. Thanks to its performance, pumped hydropower has dominated the energy grid storage market for years. However, other emerging technologies are gaining notoriety, including compressed air energy storage, which will be the topic of today’s blog.

Have you ever wondered what happens to the air when you blow up a balloon? Well, some clever people have figured out how to use that air to store electricity. It’s called compressed air energy storage (CAES), and it’s basically like having a giant balloon underground that you can fill up with air when you have extra electricity and let it out when you need more. Sounds simple, right? Well, not quite. Some challenges are involved, like keeping the air from getting too hot or cold, and making sure it doesn’t leak or explode. But if done right, CAES systems can help us use more renewable energy sources like wind and solar, and reduce our dependence on fossil fuels.

Fig – 1. Green Energy Conservation
Fig – 1. Green Energy Conservation [4]
Compressed air energy storage is a technology that stores excess electricity as compressed air in underground reservoirs or containers. When electricity is needed, the compressed air is heated and expanded to drive a turbine and generate power. CAES can help balance the supply and demand of electricity, especially from intermittent renewable sources like wind and solar. There are two main types of CAES: diabatic and adiabatic. Diabatic CAES dissipates some of the heat generated during compression to the atmosphere and uses natural gas or other fuels to reheat the air before expansion. Adiabatic CAES stores the heat of compression in a thermal storage system and uses it to reheat the air without additional fuel. Adiabatic CAES has higher efficiency and lower emissions than diabatic CAES but also higher costs and technical challenges.
Read More

Fluid Swirl in Radial Channels of Turbomachines

Update – March 1, 2023: AxSTREAM NET is our legacy software replaced  by AxSTREAM System Simulation. System Simulation was born out of the union of the legacy AxCYCLE and AxSTREAM NET software packages.

Theoretical overview

In pumps, compressors, gas turbines, and powertrains with rotating parts, there are typically cavities between the spinning rotor and the fixed stator elements. The flow’s behavior at those cavities can significantly affect a machine’s temperatures, structural loads, vibrations, and overall efficiency. Similar radial cavities, where the flow is restricted between a rotating part and a non-rotating wall, are ubiquitous in the secondary flow channels of gas turbine engines (Figure 1).

Figure 1 – Example of secondary flows in a gas turbine engine [1]
Figure 1 – Example of secondary flows in a gas turbine engine [1]
Careful planning of secondary flows can be extremely useful. For example, since secondary flows influence the pressure in cavities, flows can be designed to compensate for axial loads acting on the rotor. Additionally, flow rotation in secondary flow channels critically impacts blade cooling design. For these reasons, a solid understanding of the processes occurring in radial channels is vital for high-quality design and optimization. Read More

An Introduction to Pipe Diffusers in Centrifugal Compressors

A pipe diffuser is a special type of radial vane diffuser and is widely used in centrifugal compressors of gas turbine engines. Employing pipe diffusers can lead to increased efficiency in centrifugal compressors by an average of 2-4% compared to other vaned diffusers. The efficiency gains are especially prominent at high-pressure ratios (over 5.0), toward which we are seeing a growing trend in gas turbine engines.

Pipe Diffuser and assembly
Figure 1 (left): Single flow path of pipe diffuser & Figure 2 (right): Pipe diffuser assembly

Figure Source: Stanislaw Antas, Exhaust System for Radial and Axial-Centrifugal Compressor with Pipe Diffuser, Int J Turbo Jet Eng 2016;

Pipe Diffuser Geometry

The initial part of a pipe diffuser is a cylindrical section (throat), followed by the conical diffuser (Figure 3). The axis of the pipe diffuser must be tangent to the circle created by the tip of the centrifugal compressor, i.e., the circle defined by the impeller tip radius R2. The leading edge of the pipe diffuser channel is elliptical due to the oblique intersection of the cylindrical throat with the cylindrical surface of the diffuser radius R3. This intersection design results in gradually adapting the effluent flow from the impeller to the flow through the cylindrical and conical sections of the diffuser. The downstream duct of a compressor with a pipe diffuser is a diffusing trumpet, also called a “fishtail” diffuser. Read More

Nozzle Cascades for Turbines: Types and Design Features

The gas turbine is a rotary heat engine with double conversion of energy. In guide vanes (nozzles), the potential energy of steam is converted into kinetic energy, which is then converted into mechanical work by rotating the turbine shaft (rotor). The turbine rotor drives the rotor of the consumer machine, like in alternators, compressors, pumps, etc. [1]

Scheme of Turbine Flow Path
Figure 1 Scheme of turbine flow path [Huzel D.K., Huang D.H. Modern engineering for design of liquid-propellant rocket engines.- American institute of aeronautics and astronautics – 1992. ]
To increase the efficiency of turbine installations one must increase the thermal efficiency of the cycle, as well as the efficiency of individual elements of the installation’s thermal scheme. A familiar method of increasing the efficiency of the thermal cycle is by increasing the temperature of the working fluid in front of the turbine. However, this not only requires using high-temperature materials, but also requires cooling the blade apparatus. As a result, installation costs increase, and the efficiency of the turbine stages decreases [2]. Read More

Gas Turbine Cooling System Design Procedures

Update – March 1, 2023: AxSTREAM NET is our legacy software replaced by AxSTREAM System Simulation. System Simulation was born out of the union of the legacy AxCYCLE and AxSTREAM NET software packages.


State-of-the-art gas turbine engines usually work under extremely high temperatures. This is directly related to efficiency of the gas turbines – in order to receive the maximum thermodynamics value, it is necessary to increase the gas temperature after the combustion chamber. Engine temperature can be higher than blades’ metal temp up to 500-600 K. Blades, nozzles, and the GT details are manufactured with special heat-resistant steels and in some cases, they require a special coating. That allows them to resist turning into liquid metal under these working temperatures like the T-1000 did in the “Terminator 2: Judgment Day” movie even under high temperatures :).

Picture 1 – T-1000 from Terminator 2
Picture 1 – T-1000 from Terminator 2. Source

However, metal has the property of “creep” – this is the tendency of hard metal to move slowly or permanently deform under stress. This occurs as a result of prolonged exposure to high stresses above the yield point, especially when exposed to high temperatures. Obviously, the solution to this problem is a cooling system for heat-stressed parts, which has allowed the gas temperature to increase by 600 K compared with uncooled machines. Since the gas turbines usually work with air, the simplest way to cool the system is by using this. Typically, the air exhausts to different parts of the compressors and is supplied to the cooling paths and blades which influence the thermodynamics efficiency of the gas turbine engine. Thus, it is crucial to ensure enough cooling to remove the heat on the one hand and on the other hand – to receive the lowest amount of air which requires cooling. Read More