Gas Turbine Cooling System Design Procedures


State-of-the-art gas turbine engines usually work under extremely high temperatures. This is directly related to efficiency of the gas turbines – in order to receive the maximum thermodynamics value, it is necessary to increase the gas temperature after the combustion chamber. Engine temperature can be higher than blades’ metal temp up to 500-600 K. Blades, nozzles, and the GT details are manufactured with special heat-resistant steels and in some cases, they require a special coating. That allows them to resist turning into liquid metal under these working temperatures like the T-1000 did in the “Terminator 2: Judgment Day” movie even under high temperatures :).

Picture 1 – T-1000 from Terminator 2
Picture 1 – T-1000 from Terminator 2. Source

However, metal has the property of “creep” – this is the tendency of hard metal to move slowly or permanently deform under stress. This occurs as a result of prolonged exposure to high stresses above the yield point, especially when exposed to high temperatures. Obviously, the solution to this problem is a cooling system for heat-stressed parts, which has allowed the gas temperature to increase by 600 K compared with uncooled machines. Since the gas turbines usually work with air, the simplest way to cool the system is by using this. Typically, the air exhausts to different parts of the compressors and is supplied to the cooling paths and blades which influence the thermodynamics efficiency of the gas turbine engine. Thus, it is crucial to ensure enough cooling to remove the heat on the one hand and on the other hand – to receive the lowest amount of air which requires cooling. Read More

Performance Testing of Axial Compressors

Performance testing is a key part of the design and development process of advanced axial compressors.  These are widely used in the modern world and can be found in nearly every industry, and include the core compressor for aeropropulsion turbofan engines, as well as aeroderivative gas turbine engines for power generation.  An example of this are the turbine engines shown in Figure 1 and 2, which feature an industrial gas turbine and a high bypass ratio turbofan engine with a multistage high-pressure core compressor. The development time of these machines can involve numerous expensive design-build-test iterations before they can become an efficient and competitive product. This places a great importance on the accuracy of the data taken during the performance tests during the development of the compressor since the test data taken is often used to anchor the loss models within the design tools. Modern axial compressors typically have high aerodynamic loadings per stage for improved system efficiency and requires precise aerodynamic matching of the stages to achieve the required pressure ratio with high efficiency. Variable geometry inlet guide vanes and stators in the first few stages are typically required to provide acceptable operability while maintaining high efficiency and adequate stall margin.

Industrial gas turbine for power generation.
Figure 1. Industrial gas turbine for power generation. Source
Figure 2. Turbofan engine for aeropropulsion.
Figure 2. Turbofan engine for aeropropulsion. Source

Performance Testing of Axial Compressors

Axial compressors all undergo a thorough design and development phase in which performance testing is vital to their ultimate success as a product. Performance testing during the development phase of these high-power density machines can ensure that the design meets the specified requirements or can identify a component within the turbomachine which falls short of its expected performance, and may require further development, and possible redesign. Performance testing can also ensure that the unit can meet all the conditions specified and not merely the guaranteed condition. Aerodynamic performance testing multistage axial compressors during the early part of development is often done in phases. The development test program is planned and executed with a design of experiments approach and includes varying the air flow and shaft rotational speed as well as the variable geometry schedule in order to fully characterize the compressor. In the first phase, the front block of the compressor is built and tested at corrected (referenced) air flow rate, inlet pressure, temperature and shaft rotational speed. Instrumentation includes utilizing traditional rakes and surveys at the exit, to obtain spanwise distributions of pressure, temperature, and flow angles. Testing in phases is typically done for two reasons. Read More

Vertical Pumps: What Are They, Where Are They Used and How To Design Them?


Vertical pump designs are similar to conventional pumps, with some unique differences in their applications.  Pumps use centrifugal force to convert mechanical energy into kinetic energy and increase the pressure of the liquid. Vertical pumps move liquids in the vertical direction upwards through a pipe. All pumps pressurize liquids, which are mostly incompressible. Unlike compressible gases, it is impossible to compress liquids, therefore the volumetric flow rate can not be reduced. Therefore liquids are transported by pumping and the inlet volume flow rate is equal to the exit volume flow rate.

Vertical centrifugal pumps are simply designed machines, and have similarities to their horizontal counterparts. A casing called a volute contains an impeller mounted perpendicularly on an upright (vertical) rotating shaft. The electric drive motor uses its mechanical energy to turn the pump impeller with blades, and imparts kinetic energy to the liquid as it begins to rotate. These pumps can be single stage or multistage with several in-line stages mounted in series.

The centrifugal force through the impeller rotor causes the liquid and any particulates within the liquid to move radially outward, away from the impeller center of rotation at high tangential velocity. The swirling flow at the exit of the impeller is then channeled into a diffusion system which can be a volute or collector, which diffuses the high velocity flow and converts the velocity into high pressure. In vertical pumps, the high exit pressure enables the liquid to be pumped to high vertical locations. Thus the pump exit pressure force is utilized to lift the liquid to high levels, and usually at high residual pressure even at the pipe discharge.

Applications of Vertical Pumps

An “in line” vertical pump is illustrated in Figure 1 (Reference 1), where the flow enters horizontally and exits horizontally and can be mounted such that the center line of the inlet and discharge pipes are in line with each other.  This is a centrifugal pump with a tangential scroll at the inlet that redirects the flow by 90 degrees and distributes it circumferentially and in the axial direction into the impeller eye. The discharge is a simple volute that collects the tangential flow from the impeller exit, and redirects it into the radial direction.

in line Pump - Figure 1
An “in line” Vertical Pump. Source

Figure 2 shows a vertical pump that has a vertical intake that directs the flow straight into the eye of the pump rotor. At the impeller exit, the tangential flow is collected by a volute and diffused in an exit cone. An elbow after the exit cone redirects the flow into the vertical direction to lift the liquid to the desired altitude. (Reference 2). Read More

Charles Parsons and His Contribution to Engineering

Welcome to this special edition of the SoftInWay blog! While we at SoftInWay are known for helpful articles about designing various machines, retrofitting, and rotordynamics, we believe it is also important to examine the lives of some of the men and women behind these great machines.

The compound steam turbine is one of the greatest inventions, not just in turbomachinery but around the world. Once it was introduced to the marine industry, the steam turbine exploded in popularity as a means of allowing ships to travel faster and farther than ever before. It would go on to become a critical part in the naval arms race that preceded the First World War. The steam turbine not only revolutionized marine and naval propulsion, it became one of the best ways to generate electricity. After its inception, the steam turbine became one of the best ways to reliably generate power on a large scale, and make electricity the regular utility that it is today. But who invented the modern steam turbine?

Sir Charles Parsons
Image courtesy of Wikimedia

Sir Charles Algernon Parsons, (1854 – 1931), is the inventor of the modern steam turbine. The work he undertook in his life had a massive impact on the world, continuing the legacy of James Watt by bringing steam technology into the modern era. Born on June 13th 1854 into an Anglo-Irish family, Sir Charles Parsons was born into a well-respected family with roots in County Offaly, Ireland. In fact the town now known as Birr was then known as Parsonstown, from the early 1600’s through to 1899. Parsons was the sixth son of the 3rd Earl of Rosse, and had a family lineage that had made great strides in the areas of military, political, and physical science. The family’s castle in Birr, which is still owned by the Parsons family and is the permanent residence of the 7th Earl of Rosse, was a rendezvous for men of science during the childhood of Sir Charles. Suffice it to say, there was no better place for a future-engineer to grow up. He alongside his brothers would receive private tutorship from Sir Robert Ball and Dr Johnstone Stoney, famous Irish astronomer and physicist, respectively. Read More

Basics of Steam Turbine Design

Steam turbines account for more than half of the world’s electricity production in power plants around the world and will continue to be the dominant force in electricity power generation for the foreseeable future. The enhancement of steam turbine efficiency is increasingly important as the urgency to reduce CO2 emissions into the atmosphere is a problem at the forefront of power production. Increasing efficiency in steam turbines, and other components of power plants, will help meet the growing demands for electricity worldwide while reducing harmful greenhouse emissions.

Figure 1 Steam Turbine with Long Last-Stage Blades
Figure 1. Steam Turbine with Long Last-Stage Blades. Source

Steam turbines are used in coal-fired, nuclear, geothermal, natural gas-fired, and solar thermal power plants. Also steam turbines are increasingly needed to stabilize fluctuating power demands from solar and wind power stations as renewable energy sources grow worldwide. The current emphasis on steam turbine development is for increasing efficiency, mainly by increasing steam turbine capacity, as well as increasing operational availability, which translates to rapid start up and shut down procedures.  Read More

Choosing the Right Turbomachinery Component

Traditionally the engineering process starts with Front End Engineering Design (FEED) which is essentially the conceptual design to realize the feasibility of the project and to get an estimate of the investments required. This step is also a precursor to defining the scope for Engineering Procurement and Construction Activities (EPC). Choosing the right EPC consultant is crucial as this shapes the final selection of the equipment in the plant including turbomachinery.

Large thermal power machine

Choosing the right component for the right application is not an easy task. Too many times, one ends up choosing a component that is not the best choice by far. This is quite true when we look at component selections in the process industries compared to those in a power plant where the operating conditions are more or less constant. This improper selection of components is due to multiple reasons such as: insufficient research and studies; limitation of time, resources, budget etc. Read More

Unsteady Flow Simulation in Hydraulic Systems

[:en]An unsteady flow is one where the parameters change with respect to time. In general, any liquid flow is unsteady. But if a hydraulic system is working at constant boundary conditions, then the parameters of the fluid flow change slowly; thus this flow is considered steady. At the same time, if the parameters of the fluid flow oscillate over time relative to some constant value, then it called quasi-steady flow 1.

In practice, most fluid flows are steady or quasi-steady. Examples of the three flows are presented in Figure 1. Steady flow is presented by a simple pipe. The quasi-steady flow is represented by a sharpened edge channel. The unsteady flow is presented by an outflow from a reservoir.

Figure 1 - Different Types of Fluid Flow
Figure 1 – Different Types of Fluid Flow
Different Cases of Unsteady Flow

During operations, hydraulic systems act for long intervals at steady conditions which are called operating modes. Change between two different operating modes occurs over a short time interval (called a transient mode). If any hydraulic system works more than 95% of the time at these operating modes though, why is the unsteady flow is so important? Because the loads depend on time intervals. If the load is less, then the maximum system pressure is higher. Read More

Gas Turbine Lubrication Systems

Gas turbines have had a presence in many industries for more than a century. They are a unique technology for either producing an energy or propelling a vehicle and the efficiency of modern gas turbines is being improved continuously. One of them, a cooling system, has been described in earlier blogs. Another is the lubrication system of a gas turbine which we will cover in this blog. This  system, similar to that of a piston engine or a steam turbine, provides lubrication to decrease mechanical losses and prevent of wear on friction surfaces. Another function is the removal of heat released during friction by high rotational part and transmitted from the hot part of a turbine.  The basic units which need lubrication are the bearings supporting a shaft of a gas turbine 2.

Modern Dual Journal
Figure 1. The construction of modern dual journal4
Elements for lubrication

In a common case, gas turbine installation contains three main journal bearings used to support the gas turbine rotor 3. Additionally, thrust bearings are also maintained at the rotor-to-stator axial position 4. Click here for additional information about optimization of journal bearings. The bearing has important elements in its construction to prevent leakages from a lubrication system. The work, design and analysis of labyrinth seals is describe here.

Read More

Optimization of the Closed Supercritical CO2 Brayton Cycle with the Detailed Simulation of Heat Exchangers

Recently scientists and engineers have turned their attention again to carbon dioxide as a working fluid to increase the efficiency of the Brayton cycle. But why has this become such a focus all of a sudden?

The first reason is the economical benefit. The higher the efficiency of the cycle is, the less fuel must be burned to obtain the same power generation. Additionally, the smaller the amount of fuel burned, the fewer emission. Therefore, the increase in efficiency also positively affects the environmental situation. Also, by lowering the temperature of the discharged gases, it is possible to install additional equipment to clean exhaust gases further reducing pollution.

So how does all of this come together? Figure 1 demonstrates a Supercritical CO2 power cycle with heating by flue gases modeled in AxCYCLE™. This installation is designed to utilize waste heat after some kind of technological process. The thermal potential of the exhaust gases is quite high (temperature 800° C). Therefore, at the exit from the technological installation, a Supercritical CO2 cycle was added to generate electrical energy. It should be noted: if the thermal potential of waste gases is much lower, HRSG can be used. More information on HRSG here:

Any cycle of a power turbine installation should consist of at least 4 elements : 2 elements for changing the pressure of the working fluid (turbine and compressor) and 2 elements for changing the temperature of the body (heater and cooler). The cycle demonstrated in Figure 1 has an additional regenerator, which makes it possible to use a part of the heat of the stream after the turbine (which should be removed in the cooler) to heat the stream after the compressor. Thus, part of the heat is returned to the cycle. This increases the efficiency of the cycle, but it requires the introduction of an additional heat exchanger.

The heat exchangers used in the sCO2 cycle are of three basic types: heaters, recuperators, and coolers. Typical closed Brayton cycles using sCO2 as the working fluid require a high degree of heat recuperation.

Supercritical CO2 Power Cycle with Heating by Flue Gases
Figure 1 – Supercritical CO2 Power Cycle with Heating by Flue Gases

Having examined this scheme and examined the process in detail, we can draw the following conclusions about the advantages of this cycle which is demonstrated in Figure 2: Read More

Considerations when Designing Turbomachinery with sCO2 as a Working Fluid

Supercritical CO2 (sCO2) power cycles offer higher efficiency for power generation than conventional steam Rankine cycles and gas Brayton cycles over a wide range of applications, including waste heat recovery, concentrated solar power, nuclear, and fossil energy. sCO2 cycles operate at high pressures throughout the cycle, resulting in a working fluid with a higher density, which will lead to smaller equipment sizes, smaller carbon footprint, and therefore lower cost. However, the combinations of pressure, temperature, and density in sCO2 power cycles are outside the experience of many designers. Challenges in designing sCO2 cycles include turbomachinery aerodynamic and structural design, bearings, seals, thermal management and rotordynamics. According to the report from Sandia National Lab, compressors operating near critical point and turbines have received only TRL (technical readiness level) 4 and 5 out of 9. This blog discusses the impact on turbomachinery design.

Radial or Axial

The selection of radial or axial for turbomachinery is typically performed based on the operating conditions (adiabatic head H and inlet volumetric flow Q). Non-dimensional turbomachinery parameters of specific speed Ns and specific diameter Ds can be selected from NsDs charts to estimate size, speed, and type of turbomachinery. Turbomachinery types for a sCO2 recompression cycle with scales ranging from 100 kW to over 300 MW have been studied and concluded that systems below 10 MW will likely feature only radial turbines and compressors with a single-stage or low stage counts. Such recompression cycle can be simulated in AxCYCLE™ tool which is shown in Figure 1. As size increases, the most efficient configuration for the turbine and recompressor transitions from radial to axial at approximately 30 MW and 100 MW, respectively. Suitable types of turbomachinery and its components for different power range can be reviewed in Figure 2. A radial configuration for the main compressor was expected at all scales due to its lower volume flow and wider range to facilitate variation in gas properties due to operation near the critical point.

Recompression Cycle simulated in AxCYCLE
Figure 1 – Recompression Cycle Simulated in AxCYCLE

Read More