When to Use 1D Vs. 3D Simulation

Today’s simulation and analysis (S&A) tools allow engineers to study and verify system/machine properties and visualize the aerodynamic, thermodynamic, structural, and other physical properties without having to build a physical prototype. We can perform cooling secondary flow systems analysis in a gas turbine; a detailed performance study for a supercritical CO2 turbine/compressor; predict cavitation for industry a water pump/rocket turbopump; and so many more. Products and machines are becoming more and more complex. Unfortunately, engineers only run a handful of designs through the S&A process, due to the cost associated with limited computer resources and the time required to run simulations and to create complex 3D models of designs. Furthermore, verification and certification of system designs are often done using actual hardware—a costly and time-consuming endeavor. Considering these aspects, 1D and 3D simulations are significantly important. However, engineers need to determine the trade-off between 1D and 3D simulation.

AxSTREAM and STAR-CCM
Figure 1 AxSTREAM Platform with Modules from 0D to 3D including seamless geometry import into STAR-CCM+

1D Simulation

Imagine what’s required to generate one 3D design for a gas turbine secondary cooling flow system, and multiply it by 1,000 design alternatives. Even if we were to only use conceptual CAD models, this project would require extraordinary computing power and data storage—not to mention simulation and design expertise.

And so, even with the movement to bring more cloud-based S&A tools to market, resources required for 3D modeling will still result in very few designs being extensively explored, thanks to their complexity. Detailed low-dimensional models of system behavior can provide valuable insights into system performance and function thus guiding the design process. Read More

Notable Military Jet Engines

As a special tribute this Veterans Day, we decided to have a look at some of the most notable engines that have been used to propel military vehicles throughout history.

PW F135

Kicking off our list is the Pratt & Whitney 135 turbofan engine. The pride and joy of Pratt & Whitney’s military engine lineup, the 135 powers the US Military’s F35 Lightning II. Presently, two variants of the F135 are used in several different variants of the F35, although it should be noted that the F135 was developed specifically for the F35. The 3 engine variants are known as the F135-PW-100, the F135-PW-600, and the F135-PW-400, each for a different application of the F35. The 100 variant is used in the conventional take off and landing F35A, the 600 is used in the F135B for short take off and vertical landing F35B, and the 400 uses salt corrosion-resistant materials for the Naval variant F35C.

A Lockheed Martin F35A in fight, and an F35C taking off from the USS Abraham Lincoln

The F135 is capable of 28,000 lbf of thrust with the afterburner capability pushing thrust all the way to a whopping 43,000 lbf of thrust, making the Lightning II a supersonic STOVL aircraft suited to a wide variety of applications, as seen in the above illustrations. At the heart of the Pratt F135 are 3 fan stages, 6 compressor stages, and 3 turbine stages. In the STOVL variant, the F135-600 uses the same core components, but is also coupled to a drive shaft which connects the engine to the lift fans which were originally developed by Rolls-Royce, and give the Lightning the ability to hover, perform short distance takeoffs, and vertical landings.

A Royal Air Force RAF F35B Lightning II performing a vertical landing on a Royal Navy carrier.
A Royal Air Force RAF F35B Lightning II performing a vertical landing on a Royal Navy carrier.

The F35 by Pratt & Whitney and in turn the F35 Lightning II by Lockheed Martin represent the cutting edge in military aviation, and are the centerpieces of Pratt and Lockheed respectively. The Lightning variants and this line of turbofan engines will be in service with several branches of the US military and its allies around the world for the foreseeable future, with more iterations of the F135 to come. Read More

Modeling and Analysis of a Submarine’s Diesel Engine Lubrication System

Even in today’s age of underwater nuclear power, the majority of the world’s submarines still use diesel engines as their main source of mechanical power, as they have done since the turn of the century. A diesel engine must operate at its optimum performance to ensure a long and reliable life of engine components and to achieve peak efficiency. To operate or keep running a diesel engine at its optimum performance, the correct lubrication is required. General motors V16-278A type engine is normally found on fleet type submarines and is shown in Figure 1. This engine has two banks of 8 cylinders, each arranged in a V-design with 40 degree between banks. It is rated at 1600 bhp at 750 rpm and equipped with mechanical or solid type injection and has a uniform valve and port system of scavenging[1].

Figure 1. GM V16-278A, Submarine Diesel Engine. SOURCE: [1]
Figure 1. GM V16-278A, Submarine Diesel Engine. SOURCE: [1]
Lubrication system failure is the most expensive and frequent cause of damage, followed by incorrect maintenance and poor fuel management. Improper lubrication oil management combined with abrasive particle contamination cause the majority of damage. Therefore, an efficient lubrication system is essential to minimize risk of engine damage.

The purpose of an efficient lubrication system in a submarine’s diesel engine is to:

  1. Prevent metal to metal contact between moving parts in the engine;
  2. Aid in engine cooling by removing heat generated due to friction;
  3. Form a seal between the piston rings and the cylinder walls; and
  4. Aid in keeping the inside of the engine free of any debris or impurities which are introduced during engine operation.

­
All of these requirements should be met for an efficient lubrication system. To achieve this, the necessary amount of lubricant oil flow rate with appropriate pressure should circulate throughout the entire system, which includes each component such as bearings, gears,  piston cooling, and lubrication. If the required amount of flow rate does not flow or circulate properly to each corner of the system or rotating components, then cavitation will occur due to adverse pressure and excessive heat will be generated due to less mass flow rate. This will lead to major damage of engine components and reduced lifetime.
Read More

APPLICATION OF DIGITAL TWIN CONCEPT FOR SUPERCRITICAL CO2 OFF-DESIGN PERFORMANCE AND OPERATION ANALYSES

This is an excerpt from a technical paper, presented at the ASME Turbo Expo 2020 online conference and written by Leonid Moroz, Maksym Burlaka, Tishun Zhang, and Olga Altukhova. Follow the link at the end of the post to read the full study! 

Introduction

The attempts to simulate transient and steady-state sCO2 cycles off-design performance were performed by numerous authors [1], [2], [3], [4], and [5]. Some of them studied the dynamic behavior of regulators, some studied different control strategies or off-design behavior in different scenarios, which definitely has certain utility in the development of the reliable technology of sCO2 cycle simulation. Nevertheless, they used rather simplified models of components, especially turbomachinery and heat exchangers, which are of crucial importance to correctly simulate cycle performance.

The authors of this paper attempted to apply the digital twin concept to a simulation of off-design and part-load modes of the sCO2 bottoming cycle considering real machine characteristics and performance, which nobody tried to apply in this area.

On IGTC Japan 2015, SoftInWay Inc. has published a paper “Evaluation of Gas Turbine Exhaust Heat Recovery Utilizing Composite Supercritical CO2 Cycle”. The paper considered combinations of different bottoming sCO2 cycles for a specific middle power gas turbine. It mainly studied the advantages of different types of sCO2 cycles to increase the power production utilizing GTU waste heat.

The present paper is a further study based on that so the Cycle 2 [6] from that previous paper was selected as the sCO2 bottoming PGU layout in the present paper for subsequent analysis. The cycle is a combination of recompression cycle and simple cycle which offers 16.13 MW as output. GE LM6000-PH DLE gas turbine, was used as the heat source for bottoming PGU. According to GE official brochure [7], the GE LM6000 offers 40 MW to over 50 MW with up to 42% efficiency and 99% fleet reliability in a flexible, compact package design for utility, industrial and oil and gas applications. GE LM6000-PH DLE provides 53.26 MW output with exhaust temperature at 471 ℃ and exhaust flow at 138.8 kg/s. (This information came from GE products specification from 2015. It appears that GE continuously modifying the parameters of its turbines along with the naming of different modifications. Therefore, today’s parameters and configuration names might be slightly different comparing to 2015) Exhaust gas pressure was assumed to be 0.15 MPa. These parameters were taken to analyze the bottoming PGU and are presented below in TABLE 1.

SELECTED SET OF GE LM6000-PH DLE PARAMETERS
TABLE 1: SELECTED SET OF GE LM6000-PH DLE PARAMETERS

The digital twin (DT) concept is the developing technology that allows simulation of object behavior during its life cycle or in specified time due to changing ambient conditions, for example. The DT is applicable for performance tuning, digital machine building, healthcare, smart cities, etc [8] that allows decreasing the time and costs of development and optimize the object on the developing stage. GE has raised DT concepts for power plants to continually improves its ability to model and track the state of the plants [9].

In the context of this paper, DT is a simulation system comprised of physicist-based models organized in a special algorithmic structure that allows simulating the behavior of sCO2 PGU under alternating ambient conditions and grid demands.

The DT in this study was created utilizing AxSTREAM® Platform, which includes multiple software tools. The following software tools were utilized in this study: AxCYCLE™ was used to perform cycle thermodynamic calculation; solution generator in AxSTREAM® helped with finding possible machine geometry with given boundary conditions when performing preliminary design for compressors and turbines at design point; parameters and performance of turbomachinery including mass flow rate, pressure, power, efficiencies, etc. were calculated by Meanline/Streamline solver in AxSTREAM® for design and off-design conditions; AxSTREAM NET™ is a 1D system modeling solver and it was introduced here to simulate performance of heat exchangers (HEX) and pressure drop in the pipes involved in the cycle; AxSTREAM ION™ was used to integrate all modules and tools together in one simulation system. Read More

Initial Sizing of Centrifugal Fans

Centrifugal fans are a type of turbomachine equipment widely used in all kinds of modern and domestic life. Centrifugal fans were developed as highly efficient machines, and the design is still based on various empirical and semi empirical rules proposed by fan designers. Due to these various rules, there are different methodologies used to design impellers and other components.

Centrifugal fans consist of an impeller in a casing with a spirally shaped contour, shown in Figure 1 (left side). The air enters the impeller in an axial direction and is discharged at the impeller outer periphery. The air flow moves along the centrifugal direction (or radial direction). Centrifugal fans can generate relatively high pressures, as compared with axial flow fans. For axial flow fans, the pressure rise is small, about be few inches of water.

Radial Fan and Static Pressure
Figure 1 Radial Fan and Static Pressure, Shaft Power V/s Volume Flow Curves for Different
Types of Blades

Generally centrifugal fans have three types of blade: forward blade, backward blade and radial blade. The characteristic curve of these three kinds of centrifugal fans is shown on right side in Figure 1.

Sizing Using Cordier Diagram

Centrifugal fans (most turbomachines) can be classified based on specific speed (Ns) and specific diameters (Ds) as shown in Figure 2. Specific speed is a criterion at which a fan of unspecified diameter would run to give unit volume flow and pressure. The correlation for specific speed and specific diameter can be seen here:

Pump Formula

where, ‘N’ is rotational speed (RPM), ‘Q’ is flow rate (ft3/sec), ‘H’ is head (ft), ‘D’ is diameter (ft) Read More

Hydrogen Energy: History, Applications, and Future Developments

A Brief History Of The Discovery Of Hydrogen 

The release of combustible gas during the interaction of metals and acids was observed as early as the 16th century. That is, during the formation of chemistry as a science. The famous English scientist Henry Cavendish had studied the substance since 1766, and gave it the name “combustible air”. When burned, this gas produced water. Unfortunately, the scientist’s adherence to the theory of phlogiston (the theory that suggested the existence of a fire-type element in materials) prevented him from coming to the correct conclusions.

Henry Cavendish (1731 – 1810)
Henry Cavendish (1731 – 1810) Source: https://www.butterflyfields.com/henry-cavendish-contributions-in-science/

In 1783 the French chemist and naturalist A. Lavoisier, together with the engineer J. Meunier, and with the help of special gas meters carried out the synthesis of water, and then its analysis by means of decomposition of water vapor with hot iron. Thus, scientists were able to come to the correct conclusions, and dismantle the phlogiston theory. They found that “combustible air” is not only a part of water but can also be obtained from it. In 1787, Lavoisier put forward the assumption that the gas under study is a simple substance and, accordingly, belongs to the number of primary chemical elements. He named it hydrogene (from the Greek words hydor – water + gennao – I give birth), that is, “giving birth to water”.

Antoine-Laurent
Antoine-Laurent
de Lavoisier (1743 – 1794). Source: https://educalingo.com/en/dic-en/lavoisier

A Little About The Properties Of Hydrogen 

In a free state and under normal conditions, hydrogen is a gas, and is colorless, odorless and tasteless. Hydrogen has almost 14.5 times mass less than air. It usually exists in combination with other elements, such as oxygen in water, carbon in methane, and organic compounds. Because hydrogen is chemically extremely active, it is rarely present as an unbound element. Read More

Aircraft Life Support Systems Part 1: Oxygen System

INTRODUCTION

In the aircraft industry, several systems are designed to provide safety and comfort for crew and passengers while traveling. Oxygen gets rarified with altitude, so life support is a very important system

The cabin is pressurized in order to provide breathable air, but reaching a sea level pressure is not advisable since it would lead to a significant pressure differential between the aircraft exterior and the cabin interior. This difference could damage the aircraft structure.

Additionally, the cabin altitude is different from the flight altitude. In fact, the cabin altitude corresponds to the one reached according to the cabin pressure. Usually a commercial flight cruises at an altitude of 35,000 ft, but thanks to the pressurization system, the cabin altitude is around 6,000-8,000 ft.  Indeed, the oxygen system provides breathable oxygen to the crew and passengers if any problem were to occur during the flight.

AIRCRAFT EMERGENCY OXYGEN SYSTEM:

In a normal situation, a bleed air system is used to provide fresh air throughout the flight duration. The air is hot and must be cooled and pressurized to make it breathable.  In the event of an emergency, the plane is already equipped with oxygen systems which are linked to passengers and cabin crew through masks. In fact, there are two oxygen systems on board. One designed for the crew, and the second for the passengers.

If the cabin pressure drops making cabin altitude about 14,000 ft, the emergency system are be triggered. The emergency system provides oxygen to passengers for 15 to 20 minutes, and for the crew members for around 30 minutes. This is enough time for the aircraft to descend to a lower altitude and being the cabin altitude to a safe breathable level.

Here, the crew oxygen system schematic of the Boeing 737 class is shown in Figure 1.

Figure 1-Crew oxygen system
Figure 1-Crew oxygen system

The main challenges of oxygen equipment are:

  • Fitting the dimensions of the plane
  • Secure (no leakage for example)
  • Responsive (to cabin pressure and cabin altitude)
  • Easy for passengers to use the oxygen system through the deployed masks quickly, before the effects of altitude are felt:
  • At 25,000 ft: a person has 3 minutes of consciousness
  • At 41,000 ft: a person has 30 seconds of consciousness

­

FLIGHT CREW OXYGEN

The flight crew oxygen should be designed and made with a lot of care, because if any trouble occurs during the flight, the crew must be able to handle the situation and take the airplane and its passengers down safely. Read More

Performance Testing of Axial Compressors

Performance testing is a key part of the design and development process of advanced axial compressors.  These are widely used in the modern world and can be found in nearly every industry, and include the core compressor for aeropropulsion turbofan engines, as well as aeroderivative gas turbine engines for power generation.  An example of this are the turbine engines shown in Figure 1 and 2, which feature an industrial gas turbine and a high bypass ratio turbofan engine with a multistage high-pressure core compressor. The development time of these machines can involve numerous expensive design-build-test iterations before they can become an efficient and competitive product. This places a great importance on the accuracy of the data taken during the performance tests during the development of the compressor since the test data taken is often used to anchor the loss models within the design tools. Modern axial compressors typically have high aerodynamic loadings per stage for improved system efficiency and requires precise aerodynamic matching of the stages to achieve the required pressure ratio with high efficiency. Variable geometry inlet guide vanes and stators in the first few stages are typically required to provide acceptable operability while maintaining high efficiency and adequate stall margin.

Industrial gas turbine for power generation.
Figure 1. Industrial gas turbine for power generation. Source
Figure 2. Turbofan engine for aeropropulsion.
Figure 2. Turbofan engine for aeropropulsion. Source

Performance Testing of Axial Compressors

Axial compressors all undergo a thorough design and development phase in which performance testing is vital to their ultimate success as a product. Performance testing during the development phase of these high-power density machines can ensure that the design meets the specified requirements or can identify a component within the turbomachine which falls short of its expected performance, and may require further development, and possible redesign. Performance testing can also ensure that the unit can meet all the conditions specified and not merely the guaranteed condition. Aerodynamic performance testing multistage axial compressors during the early part of development is often done in phases. The development test program is planned and executed with a design of experiments approach and includes varying the air flow and shaft rotational speed as well as the variable geometry schedule in order to fully characterize the compressor. In the first phase, the front block of the compressor is built and tested at corrected (referenced) air flow rate, inlet pressure, temperature and shaft rotational speed. Instrumentation includes utilizing traditional rakes and surveys at the exit, to obtain spanwise distributions of pressure, temperature, and flow angles. Testing in phases is typically done for two reasons. Read More

The History of Turbochargers, Part 2

Hello! And welcome back for part 2 of our series on “A Brief History of the Turbocharger”. To read part 1, which compares superchargers and turbochargers, and explains the early history of turbochargers and forced induction from the turn of the century through to World War 1, click here. Having covered all of that, let’s pick up from where we left off!

Following World War 1, and the work of Dr. Sanford Alexander Moss, Alfred Büchi, who had created the first true turbocharger, had continued innovating following the failure of his first design. By 1925, he had a working turbocharger design that consistently and reliably worked (1).

Following this breakthrough, the turbocharger saw its first commercial application on ten-cylinder diesel engines. Since diesel engines are typically built to withstand the high-pressures required by their operating conditions, the pressures generated by using forced induction are easily accommodated. As a result of adding the turbochargers, the engines upped their horsepower ratings from 1750HP, all the way to a whopping 2,500HP. (1)

The Hansestadt Danzig, one of the German ships fitted with the 10 cylinder turbodiesel engine described above
The Hansestadt Danzig, one of the German ships fitted with the 10 cylinder turbodiesel engine described above. (shipspotting.com)

For Büchi, this was a great achievement, as it marked the first commercial application of a machine that he had first begun working with more than 20 years prior. For the turbocharger, however, this was just the beginning. Read More

Active Magnetic Bearings – When Magic Serves Engineers

From the beginning of the turbomachinery era, in the 19th century, engineers have been thinking about ways to reduce losses in rotating machines. Losses connected with fluid motion or producing the useful effects are related to the main purpose of machine operation,while losses in rotor bearings are just annoying and inevitable. Fluid film and rolling element bearings are effective solutions, but their operational principles cause increased friction – the best predictor of losses. But what if we could reduce the losses in rotating machines by avoiding the friction in required supports? What if a rotor could levitate and rotate in the air held by some magic forces? And furthermore, what if this magic could give us even bigger dividends, for example, enabling variable stiffness of rotor supports and safe passing through resonances? Luckily, engineers have already invented how to turn this magic into reality with active magnetic bearings.

The early patents of active magnetic bearings principles were recorded during the World War II, but the decisive breakthrough in production and applications of them were made during the the last three decades when the latest research about the active magnetic bearing operation and control made utilization feasible and economically viable [1].

The early patents of active magnetic bearings principles were recorded during the World War II, but the decisive breakthrough in production and applications of them were made during the the last three decades when the latest research about the active magnetic bearing operation and control made utilization feasible and economically viable [1].

Active Magnetic Bearing and its Components
Active Magnetic Bearing and its Components [2]
The main idea of an active magnetic bearing is based on the electromagnetic processes. Electrical current passing through densely wound copper coils creates magnetic fields which interact with a magnetized sleeve connected to the rotor.

Sounds pretty simple, right? But why on Earth did it take so much time to go from the general ideas to a real industrial application of active magnetic bearings? Read More