The Lovable Underdog of Turbomachinery

Everyone knows that APUs need love too…..

For Valentine’s Day, we want to look at an underdog of turbomachinery. A machine that is often overlooked, and not really in the limelight the way some of its larger cousins are, nor is it given the trendy position of being the “technology of the future” like its smaller cousins. Without this technology, airplanes would be entirely reliant on external power plants to maintain an electric power supply on the ground, and to start the main engines. So, what is this underappreciated machine?

APU plane
Okay one last hint – you can see its exhaust port.

If you haven’t been able to guess it, our Valentine this year is the aircraft auxiliary power unit, or APU for short. Although these are not present on all aircraft, they are typically used in larger airplanes such as commercial airliners. This allows aircraft to rely less on ground services when the main engines are not running. As a result, less equipment, manpower, and time are required to keep the plane in standby mode, and the aircraft can also service airports with less available resources in remote locations.

Where this Underdog Started

The aircraft auxiliary power unit can be traced back to the First World War, as they were used to provide electric power onboard airships and zeppelins. In the Second World War, American bombers and cargo aircraft had these systems as well. APUs were small piston engines, as the gas turbine had yet to be developed. These engines were typically V-twin or flat configuration engines, similar to what you might find on a motorcycle, and they were called putt-putts. These two-stroke engines usually put out less than 10-horsepower, but that was all that was required to provide DC power during low-level flight.

Read More

Centrifugal Compressor Reverse Engineering and Digital Twin Development

Centrifugal Compressors are the turbomachines also known as turbo-compressors, and belong to the roto-dynamic class of compressors. In these compressors the required pressure rise takes place due to the continuous conversion of angular momentum imparted to the working fluid by a high-speed impeller into pressure. These compressors are used in small gas-turbines, turbochargers, chiller units, in the process and paper industries, oil & gas industries and others.

The design and manufacturing of such compressors are always challenging because of its 3-dimensional shapes, high rotational speeds that interact with different loss mechanisms, and stringent working environments. In many circumstances, it is necessary to analyze an existing compressor, with the end goal being to redesign it, enhance its performance, or to use it in completely different applications. In order to meet such requirements, reverse engineering is a viable option. With reverse engineering, one can review competitor’s design to remain in market competition.

Reverse Engineering

Reverse engineering allows us to collect incomplete or non-existing design data and manufacture an accurate recreation, safely, of the original product or component.

Sometimes, it is also referred to as back engineering, in which centrifugal compressors or any other product are deconstructed to extract design information from them. Oftentimes, reverse engineering involves deconstructing individual components like the impeller or diffuser of larger compressors. End-users often use this approach when purchasing a replacement impeller or any other compressor part from an OEM is not an option. In some cases, where older impellers that have not been manufactured for 20 years or more, the original 2D drawings are no longer available.  When this is the case, the only way to obtain the design of an original compressor is through reverse engineering.

Reverse engineering requires a series of steps to gather precise information on a product’s dimensions. Once collected, the data can be stored in digital archives. Figure 1 (left) shows the typical process of reverse engineering. In figure 1 (right), one can see the scanning process of the centrifugal impeller using a laser scanner.

Figure 1 (left) Reverse Engineering Process (right) Scanning of impeller
Figure 1 (left) Reverse Engineering Process (right) Scanning of Impeller. Source

To reverse engineer an impeller or any other part of compressor, an organization will typically acquire the component and take it apart to examine its internal mechanisms. This way, engineers can unveil information about the original design and construction of the product. One can start by analyzing the dimensions and attributes of the impeller and make measurements of the blade widths, diameters and angles, as these dimensions often relate to the compressor’s performance. Read More

Rotor Dynamics Study of 4-Stage Compressor – from Theory to Application

Rotating machines have huge and important roles in our daily life although we may rarely think about them. Steam turbines at electrical power plants rotate the electrical generator shafts which produce electricity coming into our homes and offices. Driving to or from work, the reciprocating cycle in your vehicle’s internal combustion engine results in rotation of the transmission and the wheels of vehicles, while the electric car wheel operation is a result of induction motor rotation. If you get on an airplane, rotation of the turbo reactive gas turbine engine produces the effective thrust to sustain flight by moving, compressing and throwing the gas behind the plane. We can even find the useful effects of rotation in our kitchens when we are blending the food or washing our closes.

Although these rotating machines are different, the approaches to modelling their rotor dynamics are pretty much the same, since similar processes occur in rotating parts which differ in their vibrations from the non-rotating machines.

Do you remember the example of rotating washing machine? Have you ever seen it jumping on the floor trying to squeeze out your closet? We bet you have. This is the simplest example of the increased unbalance affecting the amplitudes of machine vibrations. Washing machines are designed to experience these noticeable vibrations during their operation without breaking. But the steam turbine or compressor rotors which have the tight clearances between the impellers and the casing can not boast of that leeway. In addition to that, the excessive vibrations significantly influence the machine’s useful life due to the increased fatigue.
This is why the rotor dynamics predictions are one of the most important parts of rotating machine analyses. And although they may seem easier than comprehensive stress-strain investigations of machine components, in some cases the rotor dynamics analysis can be trickiest part.

Usually, the rotor dynamics analyses are divided into lateral and torsional stages depending on the nature of rotor response to be used. They are discussed in different types of standards (API [1], ISO [2], etc.). Let’s consider the example of the lateral vibrations of a 4 stage compressor rotor with an operational speed of 8856 rpm.

Fig. 1 - 4 Stage Compressor Rotor
Fig. 1 – 4 Stage Compressor Rotor

This rotor rotates in the 4 pad tilting, pad oil film journal bearings. The characteristics of these bearings should be determined carefully to ensure that there will not be an excessive wear, heat generation or friction in them. Read More

Notable Military Jet Engines

As a special tribute this Veterans Day, we decided to have a look at some of the most notable engines that have been used to propel military vehicles throughout history.

PW F135

Kicking off our list is the Pratt & Whitney 135 turbofan engine. The pride and joy of Pratt & Whitney’s military engine lineup, the 135 powers the US Military’s F35 Lightning II. Presently, two variants of the F135 are used in several different variants of the F35, although it should be noted that the F135 was developed specifically for the F35. The 3 engine variants are known as the F135-PW-100, the F135-PW-600, and the F135-PW-400, each for a different application of the F35. The 100 variant is used in the conventional take off and landing F35A, the 600 is used in the F135B for short take off and vertical landing F35B, and the 400 uses salt corrosion-resistant materials for the Naval variant F35C.

A Lockheed Martin F35A in fight, and an F35C taking off from the USS Abraham Lincoln

The F135 is capable of 28,000 lbf of thrust with the afterburner capability pushing thrust all the way to a whopping 43,000 lbf of thrust, making the Lightning II a supersonic STOVL aircraft suited to a wide variety of applications, as seen in the above illustrations. At the heart of the Pratt F135 are 3 fan stages, 6 compressor stages, and 3 turbine stages. In the STOVL variant, the F135-600 uses the same core components, but is also coupled to a drive shaft which connects the engine to the lift fans which were originally developed by Rolls-Royce, and give the Lightning the ability to hover, perform short distance takeoffs, and vertical landings.

A Royal Air Force RAF F35B Lightning II performing a vertical landing on a Royal Navy carrier.
A Royal Air Force RAF F35B Lightning II performing a vertical landing on a Royal Navy carrier.

The F35 by Pratt & Whitney and in turn the F35 Lightning II by Lockheed Martin represent the cutting edge in military aviation, and are the centerpieces of Pratt and Lockheed respectively. The Lightning variants and this line of turbofan engines will be in service with several branches of the US military and its allies around the world for the foreseeable future, with more iterations of the F135 to come. Read More


This is an excerpt from a technical paper, presented at the ASME Turbo Expo 2020 online conference and written by Leonid Moroz, Maksym Burlaka, Tishun Zhang, and Olga Altukhova. Follow the link at the end of the post to read the full study! 


The attempts to simulate transient and steady-state sCO2 cycles off-design performance were performed by numerous authors [1], [2], [3], [4], and [5]. Some of them studied the dynamic behavior of regulators, some studied different control strategies or off-design behavior in different scenarios, which definitely has certain utility in the development of the reliable technology of sCO2 cycle simulation. Nevertheless, they used rather simplified models of components, especially turbomachinery and heat exchangers, which are of crucial importance to correctly simulate cycle performance.

The authors of this paper attempted to apply the digital twin concept to a simulation of off-design and part-load modes of the sCO2 bottoming cycle considering real machine characteristics and performance, which nobody tried to apply in this area.

On IGTC Japan 2015, SoftInWay Inc. has published a paper “Evaluation of Gas Turbine Exhaust Heat Recovery Utilizing Composite Supercritical CO2 Cycle”. The paper considered combinations of different bottoming sCO2 cycles for a specific middle power gas turbine. It mainly studied the advantages of different types of sCO2 cycles to increase the power production utilizing GTU waste heat.

The present paper is a further study based on that so the Cycle 2 [6] from that previous paper was selected as the sCO2 bottoming PGU layout in the present paper for subsequent analysis. The cycle is a combination of recompression cycle and simple cycle which offers 16.13 MW as output. GE LM6000-PH DLE gas turbine, was used as the heat source for bottoming PGU. According to GE official brochure [7], the GE LM6000 offers 40 MW to over 50 MW with up to 42% efficiency and 99% fleet reliability in a flexible, compact package design for utility, industrial and oil and gas applications. GE LM6000-PH DLE provides 53.26 MW output with exhaust temperature at 471 ℃ and exhaust flow at 138.8 kg/s. (This information came from GE products specification from 2015. It appears that GE continuously modifying the parameters of its turbines along with the naming of different modifications. Therefore, today’s parameters and configuration names might be slightly different comparing to 2015) Exhaust gas pressure was assumed to be 0.15 MPa. These parameters were taken to analyze the bottoming PGU and are presented below in TABLE 1.


The digital twin (DT) concept is the developing technology that allows simulation of object behavior during its life cycle or in specified time due to changing ambient conditions, for example. The DT is applicable for performance tuning, digital machine building, healthcare, smart cities, etc [8] that allows decreasing the time and costs of development and optimize the object on the developing stage. GE has raised DT concepts for power plants to continually improves its ability to model and track the state of the plants [9].

In the context of this paper, DT is a simulation system comprised of physicist-based models organized in a special algorithmic structure that allows simulating the behavior of sCO2 PGU under alternating ambient conditions and grid demands.

The DT in this study was created utilizing AxSTREAM® Platform, which includes multiple software tools. The following software tools were utilized in this study: AxCYCLE™ was used to perform cycle thermodynamic calculation; solution generator in AxSTREAM® helped with finding possible machine geometry with given boundary conditions when performing preliminary design for compressors and turbines at design point; parameters and performance of turbomachinery including mass flow rate, pressure, power, efficiencies, etc. were calculated by Meanline/Streamline solver in AxSTREAM® for design and off-design conditions; AxSTREAM NET™ is a 1D system modeling solver and it was introduced here to simulate performance of heat exchangers (HEX) and pressure drop in the pipes involved in the cycle; AxSTREAM ION™ was used to integrate all modules and tools together in one simulation system. Read More

Performance Testing of Axial Compressors

Performance testing is a key part of the design and development process of advanced axial compressors.  These are widely used in the modern world and can be found in nearly every industry, and include the core compressor for aeropropulsion turbofan engines, as well as aeroderivative gas turbine engines for power generation.  An example of this are the turbine engines shown in Figure 1 and 2, which feature an industrial gas turbine and a high bypass ratio turbofan engine with a multistage high-pressure core compressor. The development time of these machines can involve numerous expensive design-build-test iterations before they can become an efficient and competitive product. This places a great importance on the accuracy of the data taken during the performance tests during the development of the compressor since the test data taken is often used to anchor the loss models within the design tools. Modern axial compressors typically have high aerodynamic loadings per stage for improved system efficiency and requires precise aerodynamic matching of the stages to achieve the required pressure ratio with high efficiency. Variable geometry inlet guide vanes and stators in the first few stages are typically required to provide acceptable operability while maintaining high efficiency and adequate stall margin.

Industrial gas turbine for power generation.
Figure 1. Industrial gas turbine for power generation. Source
Figure 2. Turbofan engine for aeropropulsion.
Figure 2. Turbofan engine for aeropropulsion. Source

Performance Testing of Axial Compressors

Axial compressors all undergo a thorough design and development phase in which performance testing is vital to their ultimate success as a product. Performance testing during the development phase of these high-power density machines can ensure that the design meets the specified requirements or can identify a component within the turbomachine which falls short of its expected performance, and may require further development, and possible redesign. Performance testing can also ensure that the unit can meet all the conditions specified and not merely the guaranteed condition. Aerodynamic performance testing multistage axial compressors during the early part of development is often done in phases. The development test program is planned and executed with a design of experiments approach and includes varying the air flow and shaft rotational speed as well as the variable geometry schedule in order to fully characterize the compressor. In the first phase, the front block of the compressor is built and tested at corrected (referenced) air flow rate, inlet pressure, temperature and shaft rotational speed. Instrumentation includes utilizing traditional rakes and surveys at the exit, to obtain spanwise distributions of pressure, temperature, and flow angles. Testing in phases is typically done for two reasons. Read More

The History of Turbochargers, Part 2

Hello! And welcome back for part 2 of our series on “A Brief History of the Turbocharger”. To read part 1, which compares superchargers and turbochargers, and explains the early history of turbochargers and forced induction from the turn of the century through to World War 1, click here. Having covered all of that, let’s pick up from where we left off!

Following World War 1, and the work of Dr. Sanford Alexander Moss, Alfred Büchi, who had created the first true turbocharger, had continued innovating following the failure of his first design. By 1925, he had a working turbocharger design that consistently and reliably worked (1).

Following this breakthrough, the turbocharger saw its first commercial application on ten-cylinder diesel engines. Since diesel engines are typically built to withstand the high-pressures required by their operating conditions, the pressures generated by using forced induction are easily accommodated. As a result of adding the turbochargers, the engines upped their horsepower ratings from 1750HP, all the way to a whopping 2,500HP. (1)

The Hansestadt Danzig, one of the German ships fitted with the 10 cylinder turbodiesel engine described above
The Hansestadt Danzig, one of the German ships fitted with the 10 cylinder turbodiesel engine described above. (

For Büchi, this was a great achievement, as it marked the first commercial application of a machine that he had first begun working with more than 20 years prior. For the turbocharger, however, this was just the beginning. Read More

Centrifugal Compressors for Fuel Cells

The development of fuel cell technologies and improvements in fuel cells power densities combine to make the use of fuel cells possible in different power sectors as primary or secondary power sources for commercial purpose, residential power requirements, and automobiles, etc. The fuel cell harnesses the chemical energy of a fuel along with an oxidizing agent by converting it into electrical energy through a pair of reactions. For example, in a hydrogen fuel cell, as shown in Figure 1, the hydrogen combines with oxygen from the air to produce electricity and releases water.

Fuel Cell System
Figure 1 Fuel Cell System [1]
The design of a fuel cell system is quite complex and depends on fuel cell types and their applications. With so many possible combinations of fuel cells, this article will not focus on different type of fuel cells, but on Air Management Systems which may significantly affect the overall performance of a fuel cell system.

Air Management Systems

Key sub-systems of any fuel cell system are the fuel processor, fuel cell stack, air management and power management systems. The air management system strongly affects the fuel cell stack efficiency and the power loss of the fuel cells. Therefore, it is necessary to develop a clean, reliable, cost-effective oil-free air system [2].

Major tasks in air management system are Air Supply, Air Cleaning, Pressurization and Humidification.
Read More

A Brief History of the Turbocharger – Part 1

Turbochargers are one of the more common turbomachines out there today! As everyone is making efforts to lower carbon dioxide emissions in automobiles, and the automotive OEMs engage in a “horsepower war”, the turbocharger will likely continue to grow in popularity for both civil and commercial uses.

But how did these machines get so popular? That’s what we’ll be exploring in this blog miniseries! Today’s blog will introduce the concept of the turbocharger, and the beginnings of its development around the turn of the 20th century.

Turbocharging engines and the idea of forced induction on internal combustion engines are as old as the engines themselves. Their intertwined history can be traced back to the 1880’s, when Gottlieb Daimler was tinkering with the idea of forced induction on a “grandfather clock” engine. Daimler was supposedly the first to apply the principles of supercharging an engine in 1900, when he mounted a roots-style supercharger to a 4-stroke engine.

The birth of the turbocharger, however, would come 5 years later, when Swiss engineer Alfred Büchi received a patent for an axial compressor driven by an axial turbine on a common shaft with the piston of the engine. Although this design wasn’t feasible at the time due to a lack of viable materials, the idea was there.

Turbochargers vs Superchargers

What idea was that, exactly? And how did it differ from supercharging?

I think it’s important to quickly go over the basic differences between turbocharging and supercharging. Both offer “forced induction” for piston engines. A naturally aspirated engine simply will draw in atmospheric air as the intake valve opens, and the piston travels down to bottom dead center. A forced induction engine, pushes more air into the cylinder than what the dropping of the piston would pull in, allowing more air to be combusted, and thus generating more power and efficiency. While turbochargers and superchargers are both forced induction , how superchargers and turbochargers go about compressing that air is different. Superchargers are driven by the engine themselves, typically via a belt or gear. This uses some of the engine’s available horsepower, but doing so provides more horsepower back to the engine. The compressors can be either positive displacement configurations (such as a Roots or Twin-Screw), or a  centrifugal supercharger.

supercharger configurations
A very helpful image of the 3 kinds of superchargers, courtesy of

Turbochargers, as mentioned before, use the air from the exhaust of the engine to drive a turbine, and the work of the turbine is transmitted on a common shaft to a compressor. The most common configuration is a radial turbine driving a centrifugal compressor similar to the one above in the supercharger diagram. However, there are other configurations ,seen in larger examples, such as an axial turbine driving a centrifugal compressor. Read More

A Century of Chiller Technology

A convergence of technologies had to occur to make the modern, high-efficiency centrifugal chiller a reality. To appreciate the technology fully, we must go back in history and understand the origins of the air conditioning and refrigeration industry. Along the way, we will find an important diversion in aerospace and the critically important centrifugal compressor. Ultimately, we will find that the modern chiller is a testament to advanced technology that was developed in multiple fields.

Some of the first advances in and applications of modern industrial refrigeration were in the United States. In May 1922, Willis Carrier revealed the “Centrifugal Refrigeration Machine” – a very early incarnation of what we now call a chiller [1]. The first installation went to a Philadelphia candy manufacturer; it’s interesting to know that the birth of modern refrigeration and air conditioning started on a large scale. Back in those days, economy of scale enabled the technology to be developed. It was not until a decade later that the core technology began to be adopted into compact units that could be used in smaller businesses such as boutique shops. It took several more decades for smaller residential air conditioners to take off commercially.

Shown in the photograph below is Carrier’s first centrifugal chiller in his New Jersey factory [1].

First Centrifugal Chiller
Photo from [1]
The size of this machine is evident, as is the fact that its design, at the time, necessitated components be spread out in space for assembly and maintenance. By modern standards, the same footprint space could be used to accommodate a modern chiller with over 500 refrigeration tons in capacity. By comparison the original design has less than 100 refrigeration tons of capacity.

Read More