Performance Testing of Axial Compressors

Performance testing is a key part of the design and development process of advanced axial compressors.  These are widely used in the modern world and can be found in nearly every industry, and include the core compressor for aeropropulsion turbofan engines, as well as aeroderivative gas turbine engines for power generation.  An example of this are the turbine engines shown in Figure 1 and 2, which feature an industrial gas turbine and a high bypass ratio turbofan engine with a multistage high-pressure core compressor. The development time of these machines can involve numerous expensive design-build-test iterations before they can become an efficient and competitive product. This places a great importance on the accuracy of the data taken during the performance tests during the development of the compressor since the test data taken is often used to anchor the loss models within the design tools. Modern axial compressors typically have high aerodynamic loadings per stage for improved system efficiency and requires precise aerodynamic matching of the stages to achieve the required pressure ratio with high efficiency. Variable geometry inlet guide vanes and stators in the first few stages are typically required to provide acceptable operability while maintaining high efficiency and adequate stall margin.

Industrial gas turbine for power generation.
Figure 1. Industrial gas turbine for power generation. Source
Figure 2. Turbofan engine for aeropropulsion.
Figure 2. Turbofan engine for aeropropulsion. Source

Performance Testing of Axial Compressors

Axial compressors all undergo a thorough design and development phase in which performance testing is vital to their ultimate success as a product. Performance testing during the development phase of these high-power density machines can ensure that the design meets the specified requirements or can identify a component within the turbomachine which falls short of its expected performance, and may require further development, and possible redesign. Performance testing can also ensure that the unit can meet all the conditions specified and not merely the guaranteed condition. Aerodynamic performance testing multistage axial compressors during the early part of development is often done in phases. The development test program is planned and executed with a design of experiments approach and includes varying the air flow and shaft rotational speed as well as the variable geometry schedule in order to fully characterize the compressor. In the first phase, the front block of the compressor is built and tested at corrected (referenced) air flow rate, inlet pressure, temperature and shaft rotational speed. Instrumentation includes utilizing traditional rakes and surveys at the exit, to obtain spanwise distributions of pressure, temperature, and flow angles. Testing in phases is typically done for two reasons. Read More

The History of Turbochargers, Part 2

Hello! And welcome back for part 2 of our series on “A Brief History of the Turbocharger”. To read part 1, which compares superchargers and turbochargers, and explains the early history of turbochargers and forced induction from the turn of the century through to World War 1, click here. Having covered all of that, let’s pick up from where we left off!

Following World War 1, and the work of Dr. Sanford Alexander Moss, Alfred Büchi, who had created the first true turbocharger, had continued innovating following the failure of his first design. By 1925, he had a working turbocharger design that consistently and reliably worked (1).

Following this breakthrough, the turbocharger saw its first commercial application on ten-cylinder diesel engines. Since diesel engines are typically built to withstand the high-pressures required by their operating conditions, the pressures generated by using forced induction are easily accommodated. As a result of adding the turbochargers, the engines upped their horsepower ratings from 1750HP, all the way to a whopping 2,500HP. (1)

The Hansestadt Danzig, one of the German ships fitted with the 10 cylinder turbodiesel engine described above
The Hansestadt Danzig, one of the German ships fitted with the 10 cylinder turbodiesel engine described above. (shipspotting.com)

For Büchi, this was a great achievement, as it marked the first commercial application of a machine that he had first begun working with more than 20 years prior. For the turbocharger, however, this was just the beginning. Read More

Centrifugal Compressors for Fuel Cells

The development of fuel cell technologies and improvements in fuel cells power densities combine to make the use of fuel cells possible in different power sectors as primary or secondary power sources for commercial purpose, residential power requirements, and automobiles, etc. The fuel cell harnesses the chemical energy of a fuel along with an oxidizing agent by converting it into electrical energy through a pair of reactions. For example, in a hydrogen fuel cell, as shown in Figure 1, the hydrogen combines with oxygen from the air to produce electricity and releases water.

Fuel Cell System
Figure 1 Fuel Cell System [1]
The design of a fuel cell system is quite complex and depends on fuel cell types and their applications. With so many possible combinations of fuel cells, this article will not focus on different type of fuel cells, but on Air Management Systems which may significantly affect the overall performance of a fuel cell system.

Air Management Systems

Key sub-systems of any fuel cell system are the fuel processor, fuel cell stack, air management and power management systems. The air management system strongly affects the fuel cell stack efficiency and the power loss of the fuel cells. Therefore, it is necessary to develop a clean, reliable, cost-effective oil-free air system [2].

Major tasks in air management system are Air Supply, Air Cleaning, Pressurization and Humidification.
Read More

A Brief History of the Turbocharger – Part 1

Turbochargers are one of the more common turbomachines out there today! As everyone is making efforts to lower carbon dioxide emissions in automobiles, and the automotive OEMs engage in a “horsepower war”, the turbocharger will likely continue to grow in popularity for both civil and commercial uses.

But how did these machines get so popular? That’s what we’ll be exploring in this blog miniseries! Today’s blog will introduce the concept of the turbocharger, and the beginnings of its development around the turn of the 20th century.

Turbocharging engines and the idea of forced induction on internal combustion engines are as old as the engines themselves. Their intertwined history can be traced back to the 1880’s, when Gottlieb Daimler was tinkering with the idea of forced induction on a “grandfather clock” engine. Daimler was supposedly the first to apply the principles of supercharging an engine in 1900, when he mounted a roots-style supercharger to a 4-stroke engine.

The birth of the turbocharger, however, would come 5 years later, when Swiss engineer Alfred Büchi received a patent for an axial compressor driven by an axial turbine on a common shaft with the piston of the engine. Although this design wasn’t feasible at the time due to a lack of viable materials, the idea was there.

Turbochargers vs Superchargers

What idea was that, exactly? And how did it differ from supercharging?

I think it’s important to quickly go over the basic differences between turbocharging and supercharging. Both offer “forced induction” for piston engines. A naturally aspirated engine simply will draw in atmospheric air as the intake valve opens, and the piston travels down to bottom dead center. A forced induction engine, pushes more air into the cylinder than what the dropping of the piston would pull in, allowing more air to be combusted, and thus generating more power and efficiency. While turbochargers and superchargers are both forced induction , how superchargers and turbochargers go about compressing that air is different. Superchargers are driven by the engine themselves, typically via a belt or gear. This uses some of the engine’s available horsepower, but doing so provides more horsepower back to the engine. The compressors can be either positive displacement configurations (such as a Roots or Twin-Screw), or a  centrifugal supercharger.

supercharger configurations
A very helpful image of the 3 kinds of superchargers, courtesy of MechanicalBooster.com

Turbochargers, as mentioned before, use the air from the exhaust of the engine to drive a turbine, and the work of the turbine is transmitted on a common shaft to a compressor. The most common configuration is a radial turbine driving a centrifugal compressor similar to the one above in the supercharger diagram. However, there are other configurations ,seen in larger examples, such as an axial turbine driving a centrifugal compressor. Read More

A Century of Chiller Technology

A convergence of technologies had to occur to make the modern, high-efficiency centrifugal chiller a reality. To appreciate the technology fully, we must go back in history and understand the origins of the air conditioning and refrigeration industry. Along the way, we will find an important diversion in aerospace and the critically important centrifugal compressor. Ultimately, we will find that the modern chiller is a testament to advanced technology that was developed in multiple fields.

Some of the first advances in and applications of modern industrial refrigeration were in the United States. In May 1922, Willis Carrier revealed the “Centrifugal Refrigeration Machine” – a very early incarnation of what we now call a chiller [1]. The first installation went to a Philadelphia candy manufacturer; it’s interesting to know that the birth of modern refrigeration and air conditioning started on a large scale. Back in those days, economy of scale enabled the technology to be developed. It was not until a decade later that the core technology began to be adopted into compact units that could be used in smaller businesses such as boutique shops. It took several more decades for smaller residential air conditioners to take off commercially.

Shown in the photograph below is Carrier’s first centrifugal chiller in his New Jersey factory [1].

First Centrifugal Chiller
Photo from [1]
The size of this machine is evident, as is the fact that its design, at the time, necessitated components be spread out in space for assembly and maintenance. By modern standards, the same footprint space could be used to accommodate a modern chiller with over 500 refrigeration tons in capacity. By comparison the original design has less than 100 refrigeration tons of capacity.

Read More

Modeling a Ground Source Heat Pump

Ground source heat pumps (GSHP) are one of the fastest growing applications of renewable energy in the world, with annual increase of 10% in about 30 countries over the past 15 years.  Its main advantage is that it uses normal ground or ground water temperatures to provide heating, cooling and domestic hot water for residential and commercial buildings. GSHP’s are proving to be one of the most reliable and cost-effective heating/cooling systems that are currently available on the market and have the potential of becoming the heating system of choice to many future consumers, because of its capacity for providing a variety of services such as heat generation, hot water, humidity control, and air cooling. Additionally,  they have the potential to reduce primary energy consumption, and subsequently provide lower carbon emissions, as well as operate more quietly and have a longer life span than traditional HVAC systems. The costs associated with GSHP systems are gradually decreasing every year due to successive technological improvements, which makes them more appealing to new consumers.

The basic purpose of a GSHP is to transfer heat from the ground (or a body of water) to the inside of a building. The heat pump’s process can be reversed, in which case it will extract heat from the building and release it into the ground. Thus, the ground is the main heat source and sink. During winter, the ground will provide the heat whereas in the summer it will absorb the heat.

A GSHP comes in two basic configurations: ground-coupled (closed-loop) and groundwater (open loop) systems, which are installed horizontally and vertically, or in wells and lakes. The type chosen depends upon various factors such as the soil and rock type at the installation, the heating and cooling load required, the land available as well as the availability of a water well, or the feasibility of creating one. Figure 1 shows the diagrams of these systems.

Two Basic Configurations
Figure 1. Two Basic Configurations of GSHP Systems. SOURCE: [1]
In the ground-coupled system (Figure 1a), a closed loop of pipe, placed either horizontally (1 to 2 m deep) or vertically (50 to 100 m deep), is placed in the ground and a water-antifreeze solution is circulated through the plastic pipes to either collect heat from the ground in the winter or reject heat to the ground in the summer. The open loop system (Figure 1b), runs groundwater or lake water directly in the heat exchanger and then discharges it into another well, stream, lake, or on the ground depending upon local laws. Between the two, ground-coupled (closed loop) GSHP’s are more popular because they are very adaptable.
Read More

Engineering Luke Skywalker’s X-34 Landspeeder

Today, landspeeders we look at!

Introduction

Landspeeders belong to the “repulsorlift” transport class, like the podracers we looked at last year, and travel above a world’s surface (up to 2 meters) without contact (very useful on swampy lands like Dagobah). Landspeeders are the successors to the hanno speeder which was mainly used as a racing vehicle with many Tatooine natives still using them to race in the Boona Eve Classic today.

Luke Skywalkers Soro Suub Corporation X-34 landspeeder
Figure 1:  Luke Skywalker’s Soro Suub Corporation X-34 landspeeder from the 1977 film – Note, the Soro Suub Corporation was your main go-to landspeeder designer and manufacturer before and during the reign of the Galactic Empire even though it specialized mostly in mineral processing. Image source

Landspeeders are found in both civilian and military applications but due to intergalactic ITAR regulations we will only cover the civil aspect here with a focus on the most famous of them all. If you want to know more about our experience working with military, defense and governmental organizations (whether you area part of the Empire, Rebels, Resistance or Separatists) feel free to contact us.

The Famous X-34

Luke Skywalker’s X-34, with its 6 selectable hover heights, features an engine consisting of 3 air-cooled thrust gas turbines able to reach a top speed of about 155 mph. The side engines are also used for steering although it is not obvious whether this steering is achieved by varying their thrust to be asymmetric or through vectoring of their exhaust. With the X-34 total length being 3.4 meters it helps us estimate the overall dimensions of its engines which are, each, roughly 80 cm long by 30 cm wide. Read More

Turbomachinery System and Component Training: Something for Everyone!

Mechanical engineering is an ever-changing field, and we want to be there to help engineers stay ahead of the curve, even while they are flattening it. In that spirit, we wanted to share with you our different training options that are available now. Whether you are looking to brush up on the fundamentals, or evaluate a software platform, this is a great time to train and explore the latest and greatest in turbomachinery engineering.

Without further ado, let’s get into it!

Private Corporate Trainings Online

First and foremost, the best most comprehensive training you can get from SoftInWay is a private session with one of SoftInWay’s lead engineers and your team. Why is this the best training option? A couple of reasons:

  • Courses are entirely customizable: The scope of these private training courses is tailored to your specific needs. Are you looking to learn the fundamentals? Or perhaps you want to expand your team’s R&D capabilities when it comes to turbomachinery, rotor dynamics, and 1D thermal systems? Whatever the application, we’ll work with you to develop a course curriculum which brings the most value to you and your team.
  • One-on-one consultation with our expert engineers on individual projects and challenges. Our engineering expertise ranges from flowpath design on a turbomachine, to rotor dynamics, as well as secondary flows/multiphase flows, and other all-encompassing projects such as liquid rocket engine design.
  • ll registrants get a 1-month license of the relevant AxSTREAM modules. During the class, users will be familiarized with the ins and outs of AxSTREAM, and be able to make use of AxSTREAM’s capabilities for 1 month afterwards.

­
The class can be as long or as short as you need and scheduled around you and your team. Read More

Vapor-Compression Refrigeration Systems

Present day refrigeration is viewed as a necessity to keep our popsicles cold and our perishables fresh. But have you ever wondered what people did to keep their food from spoiling hundreds or even thousands of years ago? Or just what goes into a refrigerator system today? In this blog, we’ll take a look at how refrigeration works; the history behind it; and examine the cycle, working fluids, and components.

Schematic of Refridgeration System in AxSTREAM NET
Figure 1. Modern-day Refrigeration System in AxSTREAM NET
Introduction

Refrigeration is based on the two basic principles of evaporation and condensation. When liquid evaporates it absorbs heat and when liquid condenses, it releases heat. Once you have these principles in mind, understanding how a refrigerator works becomes much more digestible (pun intended). A modern-day refrigerator consists of components such as a condenser, compressor, evaporator and expansion valve, as well as a working fluid (refrigerant). The refrigerant is a liquid which as enters the expansion valve the rapid drop in pressure makes it expand, cool, and turn into a gas. As the refrigerant flows in the evaporator, it absorbs and removes heat from the surrounding. The compressor then compresses (as the name suggests) the fluid, raising its temperature and pressure. From here, the refrigerant flows through the condenser, releasing the heat into the air and cooling the gas back down to a liquid. Finally, the refrigerant enters the expansion valve and the cycle repeats. But what did we do before this technology was available to us?

Read More

Series on Micro Gas Turbines And How They Can Make the World Greener

Next Blog

If you’re familiar with turbomachinery, then you probably know the pivotal role they play in our lives. If you’re not, no biggie! Have a look at this blog where I discuss a world without turbomachinery. But where do microturbines fit in? I can’t speak for anyone else, but my mind immediately jumps to turbochargers in small-displacement car engines. There is, however, a whole slew of information, history, and applications for microturbines beyond being a component in your car.

The best place to start, is to establish just what a microturbine is and isn’t. Granted the prefix in the word is a dead giveaway, but just how small is a micro gas turbine?  In terms of power output, a micro gas turbine puts out between 25 and 500 kW. The size of these machines varies; some systems can be the size of a refrigerator, while others can fit on your desk. For reference, some of these machines are smaller than your average corgi!

Micro Gas Turbine and Corgi
Figure 1: A micro gas turbine with a pencil for scale (left) and your average corgi (right). Not very aerodynamic, but awfully cute. Source

In terms of components, microturbines typically consist of a compressor, combustor, turbine, alternator, generator, and in most machines, a recuperator. While incorporating a recuperator into a microturbine system comes with its own set of challenges, the benefits are often well worth it as efficiency when recuperated hovers around 25-30% (with a waste heat recovery/cogeneration system, efficiency levels can reach up to 85% though).

Figure 3: A commercial airliner's turbofan engine the common image that is conjured when one thinks of turbines in transportation
Figure 3: A commercial airliner’s turbofan engine; the common image that is conjured when one thinks of turbines in transportation.
History

When and how did the concept of micro gas turbines come about? After the advent of the jet engine in World War II and the prominence of turbochargers being used on piston-driven propeller planes during the war, companies started to see where else gas turbine technology could be utilized. Starting in the 1950’s automotive companies attempted to offer scaled down gas turbines for use in personal cars, and you can read our blog covering that more in-depth here. You can probably guess by the number of gas turbine-powered cars on the road today, that it wasn’t very successful.

Fast forward to the 1970s, companies started to take an interest in micro turbines for stationary power generation on a small, portable scale. Allison developed microturbine-powered generators for the military that showed substantially lower fuel consumption in initial testing. In the 80’s, GRI supported the AES program where they attempted to develop a 50kW turbine for aviation applications, using a heat recovery system to improve efficiency through a cogeneration system. More recently, companies like Capstone have worked with GRI on new projects to introduce microturbines to different industries where they could be useful, using the latest advancements in technology to ensure higher efficiencies and reliability of designs past. To discuss the current state of affairs for microturbines however, it might be good to list some of their present advantages and drawbacks, and then explore where in the world they could be most useful.

Micro Turbine Compressor
Figure 4: A micro turbine compressor model.

 

Advantages and Disadvantages of Microturbines

As with just about any other type of technology, microturbines have their own set of advantages and disadvantages as a result of their design that are seen in their different applications.

Advantages: 

  • – Lower emissions
  • – Lower noise level than comparable reciprocating engines
  • – Fewer moving parts with results in less maintenance needs
  • – Lower vibration levels
  • – Ligherweight, compact systems
  • – Diverse fuel selection (jet fuel, kerosene, diesel, natural gas)

­

Disadvantages:

  • – Very low efficiency without recuperator/waste heat recovery system
  • – High work requires high speeds (30-120 krpm) for small diameters
  • – Poor throttle response
  • – Expensive materials required for manufacturing
  • – More sensitive to adverse operating conditions

­

A Micro Gas Turbine
Figure 5: A Microturbine
Potential Transportation Industry Applications

There are a number of different industries which microturbines can be found both in and outside of the transportation. Throughout the upcoming months, we’ll be taking a closer look at:

  • – The Aviation Industry
  • – The Automotive Industry
  • – The Marine Industry
  • – The Rail Industry

­

Each of these industries has at least one application where micro gas turbine technology has the potential to conserve fuel and lower emissions without compromising power. In the next entry, we’ll look at the current state of the aerospace industry and where/how micro gas turbines can improve upon existing technology.

If you want to learn more about designing a micro gas turbine, or about the tools our engineers and thousands of others around the world rely on for their turbomachinery designs, reach out to us at info@softinway.com

Next Blog