Pumps are machines that transfer liquids from suction to discharge by converting mechanical energy from a rotating impeller into what is known as head. The pressure applied to the liquid forces the fluid to flow at the required rate and to overcome frictional losses in piping, valves, fittings, and process equipment.
When it comes to pump selection, reliability and efficiency go hand-in-hand. Generally, a pump that has been selected and controlled properly for its normal operating points will operate near its best efficiency point (BEP) flow, with low forces exerted on the mechanical components and low vibration — all of which result in optimal reliability.
There are several factors like process fluid properties, end use requirements, environmental conditions, pump material, inlet conditions, and others which should be considered while selecting pumps for industrial applications. Selecting the right pump type and sizing it correctly are critical to the success of any pump application. Pumping applications include constant or variable flow rate requirements, serving single or networked loads, and consisting of open loops (nonreturn or liquid delivery) or closed loops (return systems).
Some crucial factors considered while pump selections include:
Fluid Properties: The pumping fluid properties can significantly affect the choice of pump. Key considerations include:
- Acidity/alkalinity and chemical composition. Corrosive and acidic fluids can degrade pumps and should be considered when selecting pump materials.
- Operating temperature: Pump materials and expansion, mechanical seal components, and packing materials need to be considered with pumped fluids that are hotter than 200°F.
- Solids concentrations/particle sizes: When pumping abrasive liquids such as industrial slurries, selecting a pump that will not clog or fail prematurely depends on particle size, hardness, and the volumetric percentage of solids.
- Specific gravity: It affects the energy required to lift and move the fluid and must be considered when determining pump power requirements.
- Vapor pressure and Viscosity: Proper consideration of the fluid’s vapor pressure will help to minimize the risk of cavitation. High viscosity fluids result in reduced centrifugal pump performance and increased power requirements. It is particularly important to consider pump suction-side line losses when pumping viscous fluids.
Materials of Construction: It is always required to check the compatibility of materials of construction with the process liquid or any other liquids the pump might encounter. The initial cost of these materials is normally the first consideration. The operational costs, replacement costs and longevity of service and repair costs will, however, determine the actual cost of the pump during its lifetime. Charts are available to check the chemical compatibility and identify the most appropriate materials of construction for the pump.
The impact of the impeller material on the life of a pump under cavitation conditions is shown in Figure 1. As an example, changing from mild steel (reliability factor of 1.0) to stainless steel (reliability factor of 4.0) would increase the impeller life from cavitation damage by a factor of four. Hard coatings, such as certain ceramics, can also increase the impeller life under cavitating conditions.

Pump Sizing and Performance Specifications: The desired pump discharge is needed to accurately size the piping system, determine friction head losses, construct a system curve, and select a pump and drive motor. Process requirements can be achieved by providing a constant flow rate, or by using a throttling valve or variable speed drives. Read More