Turbomachinery CFD Simulation: Art in Motion

This is an excerpt from the Siemens Blog. You can read the full version here.

Originally Written By Justin Hodges - July 14, 2020  

Turbine blade simulation juxtaposed with turbine blade art. The resemblance is uncanny! 

Believe it or not, there is some true art in turbomachinery CFD simulation. From the creamer in your coffee to the tumbling of flow through a small waterway. There is something palpable with intrigue when observing fluid flows in our everyday routines. As computational fluid dynamics practitioners, we are fortunate to have a unique opportunity. That is to simulate and observe these same curious fundamentals of turbulence and fluid flow until our heart is content.

Read More

The Lovable Underdog of Turbomachinery

Everyone knows that APUs need love too…..

For Valentine’s Day, we want to look at an underdog of turbomachinery. A machine that is often overlooked, and not really in the limelight the way some of its larger cousins are, nor is it given the trendy position of being the “technology of the future” like its smaller cousins. Without this technology, airplanes would be entirely reliant on external power plants to maintain an electric power supply on the ground, and to start the main engines. So, what is this underappreciated machine?

APU plane
Okay one last hint – you can see its exhaust port.

If you haven’t been able to guess it, our Valentine this year is the aircraft auxiliary power unit, or APU for short. Although these are not present on all aircraft, they are typically used in larger airplanes such as commercial airliners. This allows aircraft to rely less on ground services when the main engines are not running. As a result, less equipment, manpower, and time are required to keep the plane in standby mode, and the aircraft can also service airports with less available resources in remote locations.

Where this Underdog Started

The aircraft auxiliary power unit can be traced back to the First World War, as they were used to provide electric power onboard airships and zeppelins. In the Second World War, American bombers and cargo aircraft had these systems as well. APUs were small piston engines, as the gas turbine had yet to be developed. These engines were typically V-twin or flat configuration engines, similar to what you might find on a motorcycle, and they were called putt-putts. These two-stroke engines usually put out less than 10-horsepower, but that was all that was required to provide DC power during low-level flight.

Read More

Hans von Ohain – The Other Father of Jet Engines and the Gas Turbine

The question of who invented the jet engine is often met with two different answers, and neither is really wrong. In fact, we posed this question on our LinkedIn page, and got the same mixed results seen elsewhere.  Both Sir Frank Whittle and Hans von Ohain were responsible for inventing the turbojet engine at the same time. While Dr. von Ohain knew of Sir Frank’s work, he did not draw information from, while Sir Frank was unaware that anyone else was designing a turbojet engine.  While we’ve covered Sir Frank Whittle before, today we’ll be looking at the life of Hans von Ohain, his invention of the turbojet, and his contributions to turbomachinery engineering.

Dr. Hans von Ohain
Dr. Hans von Ohain

Dr. Hans Joachim Pabst von Ohain was born on December 14, 1911 in Dessau, Germany. He went to school at the University of Göttingen where he received his PhD in Physics and Aerodynamics in 1935. During his studies and following his graduation, he was captivated by  aviation and airplane propulsion, with a specific interest in developing an aircraft that did not rely on a piston-driven propeller. According to the National Aviation Hall of Fame, he “conceived the idea for jet propulsion in 1933 when he realized that the great noise and vibrations of the propeller piston engines seemed to destroy the smoothness and steadiness of flying”. (1) Read More

Notable Military Jet Engines

As a special tribute this Veterans Day, we decided to have a look at some of the most notable engines that have been used to propel military vehicles throughout history.

PW F135

Kicking off our list is the Pratt & Whitney 135 turbofan engine. The pride and joy of Pratt & Whitney’s military engine lineup, the 135 powers the US Military’s F35 Lightning II. Presently, two variants of the F135 are used in several different variants of the F35, although it should be noted that the F135 was developed specifically for the F35. The 3 engine variants are known as the F135-PW-100, the F135-PW-600, and the F135-PW-400, each for a different application of the F35. The 100 variant is used in the conventional take off and landing F35A, the 600 is used in the F135B for short take off and vertical landing F35B, and the 400 uses salt corrosion-resistant materials for the Naval variant F35C.

A Lockheed Martin F35A in fight, and an F35C taking off from the USS Abraham Lincoln

The F135 is capable of 28,000 lbf of thrust with the afterburner capability pushing thrust all the way to a whopping 43,000 lbf of thrust, making the Lightning II a supersonic STOVL aircraft suited to a wide variety of applications, as seen in the above illustrations. At the heart of the Pratt F135 are 3 fan stages, 6 compressor stages, and 3 turbine stages. In the STOVL variant, the F135-600 uses the same core components, but is also coupled to a drive shaft which connects the engine to the lift fans which were originally developed by Rolls-Royce, and give the Lightning the ability to hover, perform short distance takeoffs, and vertical landings.

A Royal Air Force RAF F35B Lightning II performing a vertical landing on a Royal Navy carrier.
A Royal Air Force RAF F35B Lightning II performing a vertical landing on a Royal Navy carrier.

The F35 by Pratt & Whitney and in turn the F35 Lightning II by Lockheed Martin represent the cutting edge in military aviation, and are the centerpieces of Pratt and Lockheed respectively. The Lightning variants and this line of turbofan engines will be in service with several branches of the US military and its allies around the world for the foreseeable future, with more iterations of the F135 to come. Read More

The History of Turbochargers, Part 2

Hello! And welcome back for part 2 of our series on “A Brief History of the Turbocharger”. To read part 1, which compares superchargers and turbochargers, and explains the early history of turbochargers and forced induction from the turn of the century through to World War 1, click here. Having covered all of that, let’s pick up from where we left off!

Following World War 1, and the work of Dr. Sanford Alexander Moss, Alfred Büchi, who had created the first true turbocharger, had continued innovating following the failure of his first design. By 1925, he had a working turbocharger design that consistently and reliably worked (1).

Following this breakthrough, the turbocharger saw its first commercial application on ten-cylinder diesel engines. Since diesel engines are typically built to withstand the high-pressures required by their operating conditions, the pressures generated by using forced induction are easily accommodated. As a result of adding the turbochargers, the engines upped their horsepower ratings from 1750HP, all the way to a whopping 2,500HP. (1)

The Hansestadt Danzig, one of the German ships fitted with the 10 cylinder turbodiesel engine described above
The Hansestadt Danzig, one of the German ships fitted with the 10 cylinder turbodiesel engine described above. (shipspotting.com)

For Büchi, this was a great achievement, as it marked the first commercial application of a machine that he had first begun working with more than 20 years prior. For the turbocharger, however, this was just the beginning. Read More

A Brief History of the Turbocharger – Part 1

Turbochargers are one of the more common turbomachines out there today! As everyone is making efforts to lower carbon dioxide emissions in automobiles, and the automotive OEMs engage in a “horsepower war”, the turbocharger will likely continue to grow in popularity for both civil and commercial uses.

But how did these machines get so popular? That’s what we’ll be exploring in this blog miniseries! Today’s blog will introduce the concept of the turbocharger, and the beginnings of its development around the turn of the 20th century.

Turbocharging engines and the idea of forced induction on internal combustion engines are as old as the engines themselves. Their intertwined history can be traced back to the 1880’s, when Gottlieb Daimler was tinkering with the idea of forced induction on a “grandfather clock” engine. Daimler was supposedly the first to apply the principles of supercharging an engine in 1900, when he mounted a roots-style supercharger to a 4-stroke engine.

The birth of the turbocharger, however, would come 5 years later, when Swiss engineer Alfred Büchi received a patent for an axial compressor driven by an axial turbine on a common shaft with the piston of the engine. Although this design wasn’t feasible at the time due to a lack of viable materials, the idea was there.

Turbochargers vs Superchargers

What idea was that, exactly? And how did it differ from supercharging?

I think it’s important to quickly go over the basic differences between turbocharging and supercharging. Both offer “forced induction” for piston engines. A naturally aspirated engine simply will draw in atmospheric air as the intake valve opens, and the piston travels down to bottom dead center. A forced induction engine, pushes more air into the cylinder than what the dropping of the piston would pull in, allowing more air to be combusted, and thus generating more power and efficiency. While turbochargers and superchargers are both forced induction , how superchargers and turbochargers go about compressing that air is different. Superchargers are driven by the engine themselves, typically via a belt or gear. This uses some of the engine’s available horsepower, but doing so provides more horsepower back to the engine. The compressors can be either positive displacement configurations (such as a Roots or Twin-Screw), or a  centrifugal supercharger.

supercharger configurations
A very helpful image of the 3 kinds of superchargers, courtesy of MechanicalBooster.com

Turbochargers, as mentioned before, use the air from the exhaust of the engine to drive a turbine, and the work of the turbine is transmitted on a common shaft to a compressor. The most common configuration is a radial turbine driving a centrifugal compressor similar to the one above in the supercharger diagram. However, there are other configurations ,seen in larger examples, such as an axial turbine driving a centrifugal compressor. Read More

Micro Gas Turbines in Trains and Railroad Technology

Previous Blog

Welcome to this latest (and sadly, last) entry in the Micro Gas Turbines in Transportation series! Today, we’ll be having a quick look at micro gas turbines and their larger siblings, specifically the history of how they have been used in railroad locomotion and  what the future holds for micro turbines and railroad technology. We’ll also consider the advantages and disadvantages of using them to drive trains.

Rail transportation has been around in one form or another for longer than you might think. There are examples of wheeled carts running on fixed roads and tracks that prevented any deviation being used since the 6th century BC in ancient Greece.

Up until the late 18th Century, however, railroads were rather limited in what they could be used for, since there was no way of mechanically propelling the vehicles used. Rather, these railroads relied on humans, animals, or gravity to move the carts along the tracks. This changed when in 1784, the great Scottish inventor James Watt created and patented the first steam engine locomotive which was an improvement of a steam engine designed by Thomas Newcomen. Following this invention, engineers in the UK working on different projects such as Richard Trevithick and his development of the first high-pressure steam engine would lead to the first uses of locomotive-hauled railway. His invention would be used in Wales on a short 9 mile run from an iron-works in Penydarren to the Merthyr-Cardiff canal.(2)  On February 21st, 1804, the first trip took place on this railway using only steam propulsion.(2) However it wasn’t until George Stephenson’s creation paved the way for public use of steam engines like those created by James Watt on the rails, and in the coming years rail travel would play an important role not just in the United Kingdom but in the United States as well. This raises the question, where and when did turbines and turbomachinery come into play in rail travel?

George Stephenson's Locomotion 1 –
George Stephenson’s Locomotion 1 – image courtesy of Chris55 / CC BY-SA

Believe it or not, gas turbines in trains were being experimented with long before Frank Whittle and Hans von Ohain were designing them to take to the skies. As far back as 1861, the year that Abraham Lincoln became president of the United States, patents were being filed for a turbine that utilized ambient air mixed with combustion gasses to drive a turbine. As seen in patent 1633, Marc Antoine Francois Mennons created an engine that included all of the components needed in a modern gas turbine engine. It was called a “caloric engine” and it had a compressor (called a ventilator), combustion chamber (using ambient air and burned wood or coke), and a turbine to create work from the combustion gasses as well as a pre-heater (which he called a regenerating apparatus).(3)

Read More

Charles Parsons and His Contribution to Engineering

Welcome to this special edition of the SoftInWay blog! While we at SoftInWay are known for helpful articles about designing various machines, retrofitting, and rotordynamics, we believe it is also important to examine the lives of some of the men and women behind these great machines.

The compound steam turbine is one of the greatest inventions, not just in turbomachinery but around the world. Once it was introduced to the marine industry, the steam turbine exploded in popularity as a means of allowing ships to travel faster and farther than ever before. It would go on to become a critical part in the naval arms race that preceded the First World War. The steam turbine not only revolutionized marine and naval propulsion, it became one of the best ways to generate electricity. After its inception, the steam turbine became one of the best ways to reliably generate power on a large scale, and make electricity the regular utility that it is today. But who invented the modern steam turbine?

Sir Charles Parsons
Image courtesy of Wikimedia

Sir Charles Algernon Parsons, (1854 – 1931), is the inventor of the modern steam turbine. The work he undertook in his life had a massive impact on the world, continuing the legacy of James Watt by bringing steam technology into the modern era. Born on June 13th 1854 into an Anglo-Irish family, Sir Charles Parsons was born into a well-respected family with roots in County Offaly, Ireland. In fact the town now known as Birr was then known as Parsonstown, from the early 1600’s through to 1899. Parsons was the sixth son of the 3rd Earl of Rosse, and had a family lineage that had made great strides in the areas of military, political, and physical science. The family’s castle in Birr, which is still owned by the Parsons family and is the permanent residence of the 7th Earl of Rosse, was a rendezvous for men of science during the childhood of Sir Charles. Suffice it to say, there was no better place for a future-engineer to grow up. He alongside his brothers would receive private tutorship from Sir Robert Ball and Dr Johnstone Stoney, famous Irish astronomer and physicist, respectively. Read More

Engineering Luke Skywalker’s X-34 Landspeeder

Today, landspeeders we look at!

Introduction

Landspeeders belong to the “repulsorlift” transport class, like the podracers we looked at last year, and travel above a world’s surface (up to 2 meters) without contact (very useful on swampy lands like Dagobah). Landspeeders are the successors to the hanno speeder which was mainly used as a racing vehicle with many Tatooine natives still using them to race in the Boona Eve Classic today.

Luke Skywalkers Soro Suub Corporation X-34 landspeeder
Figure 1:  Luke Skywalker’s Soro Suub Corporation X-34 landspeeder from the 1977 film – Note, the Soro Suub Corporation was your main go-to landspeeder designer and manufacturer before and during the reign of the Galactic Empire even though it specialized mostly in mineral processing. Image source

Landspeeders are found in both civilian and military applications but due to intergalactic ITAR regulations we will only cover the civil aspect here with a focus on the most famous of them all. If you want to know more about our experience working with military, defense and governmental organizations (whether you area part of the Empire, Rebels, Resistance or Separatists) feel free to contact us.

The Famous X-34

Luke Skywalker’s X-34, with its 6 selectable hover heights, features an engine consisting of 3 air-cooled thrust gas turbines able to reach a top speed of about 155 mph. The side engines are also used for steering although it is not obvious whether this steering is achieved by varying their thrust to be asymmetric or through vectoring of their exhaust. With the X-34 total length being 3.4 meters it helps us estimate the overall dimensions of its engines which are, each, roughly 80 cm long by 30 cm wide. Read More

Micro Turbines in Maritime Transportation

Previous Blog  Next Blog

Hello! Or should I say, welcome aboard! In this edition of micro gas turbines in transportation, we’re going to be looking at micro gas turbines in the marine world. Marine transportation presents its own set of unique challenges not seen in other forms of transportation; although some of the common challenges and hurdles will be seen here too. If you haven’t read the other entries, or the introduction, I highly recommend you do so here.

Out of all the different vehicles and forms of transportation that will be covered in this series, the boat as we know it is one of the oldest ways of getting about. From rowing to sailing to paddle wheels and engines, the boat has a long history of carrying every kind of good and being imaginable. Much like the topic of turbines, marine transportation can take up oceans of information; in fact you might say that it’s a whale of a topic.

Whale Whale Whale
Whale, here we are with another pun. I hope it brightens your day at least! Image courtesy of The Georgia Aquarium

This blog will specifically cover a brief history of motorized marine transportation, where/how micro turbines can be used, and the inherent advantages and disadvantages. Let’s get started!

A Brief History of Engines in Marine Transportation

Steamboats became popular in the 19th Century when the Industrial Revolution was in its early stages. Steam engines like the ones designed by James Watt were used to propel everything from small riverboats like the ones that went up and down the Missouri river, to oceangoing steamships. The engines typically drove a propeller or “screw” or a large paddle wheel like what is commonly seen on a watermill. Different steam engines in different configurations dominated marine transportation throughout the 19th century, and by the turn of the 20th century, large expansion engines began to be utilized for oceangoing ships like the Olympic-class ocean liners as well as warships. Read More