#### Steam Turbine Seal Leakage Calculation in Design

[:en]Steam turbine seals are parts inserted between moving and stationary components, to reduce and prevent steam leakage and air leaking into the low pressure areas. The leakage can happen through vane, gland, and shaft, etc. To reduce leakage from those parts while guaranteeing smooth operation of a steam turbine, engineers have to design these seals, taking into account not only efficiency, but also mechanical strength, vibration and cost.

As an example, steam turbine flow path seals improve overall efficiency installing various types of shrouds, diaphragms, and end seals which prevent idle leaks of working steam in the cylinders. In steam turbines, labyrinth seals are widely used. Some labyrinth seals are also used with honeycomb inserts. It is believed that the use of such seals makes it possible to achieve a certain gain due to smaller leaks of working fluid and more reliable operation of the system under the conditions in which the rotor’s rotating parts may rub against the stator elements. However, we can only consider it as a successful design if the structures are compliant with the manufacturing capabilities and have good vibration stability. [1] Furthermore, seal leakage can significantly affect efficiencies. Better seals increase efficiencies but add extra cost to both manufacturing and maintenance, so the design needs to be done with the turbine flow path design. Although modeling the seals in 3D CFD is theoretically possible, the calculation resources and time are extremely demanding.

This important task can be completed very easily with AxSTREAM NETTM. AxSTREAM NETTM provides a flexible method to represent fluid path and solid structure as a set of 1D elements, which can be connected to each other to form a thermal-fluid network. For each fluid path section, the program calculates fluid flow parameters for inlet and outlet cross-sections, like velocity, density, temperature, mass flow rate, etc. Therefore, the leakage from the whole system can be modeled in this network, as shown in Figure 1.

AxSTREAM NET™ is capable of doing:

1. Choice of seal design at the stage of the steam/gas turbine preliminary design.
2. Calculation of balances of pressures and mass flow rate to correctly account for the efficiency of the steam/gas turbine.
3. Calculation of seals fluid flow parameters on the startup mode to estimate the thermal expansion of rotor and casing element.
4. Calculation of thermal boundary conditions for thermo stresses estimation.

#### Steam Turbine Aerodynamic Improvements for Significant Efficiency Gains

[:en]

The steam turbine is one of the most important power generating equipment items in use. Around half of the electricity generated worldwide comes from steam turbines. Steam turbines can be fueled by coal, nuclear energy, petroleum or natural gas, alternatively by biomass, solar energy or geothermal energy. Thus a large amount of fuel can be saved and CO2 emissions significantly reduced by optimizing key components of these widely used machines.

An important goal in steam turbine technology is to improve efficiency. The continuous flow of steam conditions is one of the commonly accepted efficiency contributor for steam power plants. The chart below shows expected improvement in thermal efficiency for USC double-reheat fossil-fuel power units compared to common supercritical-pressure ones, according to Hitachi.

Besides steam condition elevation, other areas help the development and refinement of innovative aerodynamic flow path design approaches and the improvement of design procedures for nozzle and blades design and analysis. Continuous growth of steam conditions since the mid-1990s and some advanced steam path design for large steam turbines have brought about 5% of efficiency gain. This effect is almost the same as the transition from subcritical-pressure steam conditions to the supercritical-pressure ones with elevated steam temperatures illustrated in the figure above. Here are some practical examples of steam turbines high efficiency, achieved during the last decade by advanced aerodynamic design (source: Leizerovich, A. Sh. Steam turbines for modern fossil-fuel power plants, ©2008 by The Fairmont Press).

#### Organic Rankine Cycles: Low Temperature, High Efficiency

[:en]Nowadays the scientific community is strongly concerned about problems of efficiency increase and emissions reduction in power generation, ship, and vehicle drives such as internal combustion engines (ICE). A system utilizing waste heat recovery (WHR) is an effective solution for the aforementioned problems.

ORC (meaning organic Rankine cycle, not the scary monsters from Lord of the Rings) is one WHR solution which delivers additional power from the turbine/engine exhaust gas/steam energy.  ORC systems operate on hydrocarbon-based fluids which effectively avoid the typical disadvantages associated with water-based steam turbine systems while bringing the advantage of better performance at part load and in non-continuous operation. ORC systems, capable of utilizing low temperature heat sources of 100-200°C, can be designed in compact and modular packages which require very little maintenance.

The design criteria of an ORC system and its components includes finding the maximum possible heat recovery from the available high and low temperature waste heat flows of a turbine or ICE to produce the maximum amount of additional power while decreasing the load on the turbine’s cooling system, under certain restrictions like geometry and cost.

The first step is to design the thermodynamic cycle configuration. Figure 1 is a flow diagram of a dual loop supercritical organic Rankine cycle (SORC) with separate turbines and given design parameters of the components, generated with AxCYCLE™ software, developed by SoftInWay. The cycle consists of 6 heat exchangers, 2 turbines (HPT and LPT), 2 pumps (HPP and LPP) and the condenser. Both turbines operate with the same backpressure – 1.3 bars. The flows of the working fluid (R245fa in this case) are mixed at the condenser inlet and split at its outlet. The temperature – entropy diagram for the presented cycle is shown on Figure 2. The process 1-2-3-4-5-1 corresponds to the high pressure loop operation and the process 10-20-30-40-10 is for the low pressure loop operation. All these can be easily manipulated and obtained with user-friendly interface of AxCYCLE™.

In terms of component design, ORC turbines can be of axial, radial inflow and radial outflow configurations. The type of turbine you should select depends on the application. To delve further into the topic, check out  SoftInWay’s webinar on “Radial Inflow versus Outflow Turbines – Comparison, Advantages and Applicability” here – http://learn.softinway.com/Webinar/Watch/102

#### Birth, Fall and Resurgence of Gas Turbine Technology for Trains

We as human kind have always aimed at achieving something better, something bigger. This led to the research on gas turbines, which was mainly inspired due to the immediate requirement in the aerospace and power generation industry, to also look beyond the scope of aeronautics.

Today gas turbine technology is often used when dealing with aerospace and power generation industries, but believe it or not, gas turbine technology has been used in ground transportation too;  notably locomotives.

### The Early Applications

After the first world war, several countries had the expertise and the finances to invest in achieving the technological edge in the new post war era. The gas turbine technology was one such technological endeavor, and by the mid-20th century the gas turbine could be found in several applications. Birth of gas turbine locomotives can be credited to two distinct characteristics of these locomotives versus the contemporary diesel locomotives. First, there are fewer moving parts in a gas turbine, decreasing the need for lubrication. This can also potentially reduce the maintenance costs. Second, the power-to-weight ratio is much higher for such locomotives which makes a turbine of a given power output physically smaller than an equally powerful piston engine, allowing a locomotive to be powerful enough without being too bulky.

#### Can a sales team select the right turbomachinery for a client without bothering the engineering team?

[:en]This might seem like a strange question, but we get ask this a lot. The question takes the form of: Can the sales side do a proper preliminary design and select the optimal machine (turbine/compressor/pump)?  Is it possible for the design and application task to be integrated in a way allowing the application team the autonomy to make decisions without going back to the engineering team every time they get an inquiry? After realizing how large of a pain point this is for our clients, we decided to solve this problem for a major turbine manufacturer in Asia and in the process, provided a time-saving solution to maximize the returns for all the stakeholders.

The challenge came with the different competencies of the sales and design team. The sales/application teams are not necessarily experts in design while designers cannot double as application engineers to meet the sales requirements.

In our efforts to solve this issue, we worked with this turbine manufacturer. We listed all of their current processes, limitation, requirements, constraints, and etc. to explore the many possible ways to resolve this pain point. In the end, there were two solutions; (1) Develop custom selection software, or (2) Leverage the AxSTREAM® platform using AxSTREAM ION™.

1. Developing Custom Selection Software: Developing a custom selection software specific to the manufacturer where their application team can choose the optimal turbine based on expected customer needs. Developing such a custom system requires bringing together the expertise of different teams from turbomachinery (such as aero-thermal and structural) to software developer, testing, etc. Developing such a one-off system also takes considerable time at considerable cost. This approach could solve the current problem, but with rapidly changing technologies and market requirements, this is not a viable long-term solution.
2. Leverage the AxSTREAM® Platform using AxSTREAM ION™: We evaluated the limitation and possibilities of utilizing our turbomachinery design platform AxSTREAM® to meet the requirement of sales/application engineering team for today’s needs and in the future. We found the organization had a greater advantage using this existing platform rather than investing in the short-term solution of developing a custom selection software. Many of the building blocks required for customization are already available to use via an interface a non-technical sales person could easily use. This platform was utilized for meeting the requirement of this turbine manufacturer saving time and cost while resolving a large pain-point for the organization.

#### Evaluating the Scalability of Different Combined Cycles with Bottoming sCO2 Turbines

[:en]Bottoming cycles are generating a real interest in a world where resources are becoming scarcer and the environmental footprint of power plants is becoming more controlled. With this in mind, reduction of flue gas temperature, power generation boost, and even production of heat for cogeneration application is very attractive and it becomes necessary to quantify how much can really be extracted from a simple cycle to be converted to a combined configuration.

Supercritical CO2 is becoming an ideal working fluid primarily due to two factors. First, turbomachines are being designed to be significantly more compact. Second, the fluid operates at a high thermal efficiency in the cycles. These two factors create an increased interest in its various applications. Evaluating the option of combined gas and supercritical CO2 cycles for different gas turbine sizes, gas turbine exhaust gas temperatures and configurations of bottoming cycle type becomes an essential step toward creating guidelines for the question, “how much more can I get with what I have?”

#### [:en]Direct Off-Design Performance Prediction of an Industrial Gas Turbine Engine[:cn]Direct Off-Design Performance Prediction of Industrial Gas Turbine Engine[:]

[:en]The modern gas turbine engine has been used in the power generation industry for almost half a century. Traditionally, gas turbines are designed to operate with the best efficiency during normal operating conditions and at specific operating points. However, the real world is non-optimal and the engine may have to operate at off-design conditions due to load requirements, different ambient temperatures, fuel types, relative humidity and driven equipment speed. Also more and more base-load gas turbines have to work at partial load, which can affect the hot gas path condition and life expectancy.

At these off-design conditions, the gas turbine efficiency and life deterioration rate can significantly deviate from the design specifications. During a gas turbine’s life, power generation providers may need to perform several overhauls or upgrades for their engines. Thus, the off-design performance after the overhaul can also change. Prediction of gas turbine off-design performance is essential to economic operation of power generation equipment. In the following post, such a system for complex design and off-design performance prediction (AxSTREAM®) is presented. It enables users to predict the gas turbine engine design and off-design performance almost automatically. Each component’s performance such as the turbine, compressor, combustor and secondary flow (cooling) system is directly and simultaneously calculated for every off-design performance request, making it possible to build an off-design performance map including the cooling system. The presented approach provides a wide range of capabilities for optimization of operation modes of industrial gas turbine engines and other complex turbomachinery systems for specific operation conditions (environment, grid demands more).

#### Micro-turbines for Extending Electric Car Range

[:en]The concept of using gas turbines to power a car is not new. In fact, for many decades now, various car manufacturers have experimented with the idea of using either axial or radial gas turbines as the main propulsion of concept vehicles. In the 50’s and 60’s it was Fiat and Chrysler who introduced such concept cars. In those cases, the gas turbine was directly powering the wheels for propulsion. Toyota followed the same concept in the 80’s (Figure 1) [2]. Their concept car utilized a radial turbine in order to propel the vehicle using an advanced electronically controlled transmission system.

The main advantage of a gas turbine compared with conventional reciprocating (or even rotary) car engines is the fact that it has a much higher power-to-weight ratio. This means that for the same engine weight, a gas turbine is able to deliver much higher power output. This is why aviation was one of the biggest adopters of this technology.

#### [:en]Gas Turbine Cooling – Enhance Current Advances with SoftInWay[:cn]Gas Turbine Cooling – Enhance Current Advances with SoftInWay[[:]

[:en]The development of turbine cooling is a process that requires continuous improvements and upgrades. A gas turbine engine is a thermal device and so it is composed of a range of major and minor cooling and heating systems. Turbine cooling is just a small part of the total engine system cooling challenges (combustor system cooling, heat exchangers, casings, bores, compressor and turbine disks, bearings and gears etc.). However, effective turbine cooling consists of the greatest economic factor when it comes to engine development and repair costs, representing up to 30% of the total cost.

As a thermodynamic Brayton cycle, the performance of the gas turbine engine is influenced by the turbine inlet temperature, and the raise of this temperature can lead to better performance and more efficient machines. Current advancements in the development of cooling systems allows most modern gas turbines to operate in temperatures much higher than the material melting point. Of course nothing would have been possible without the parallel development of advanced materials for structural components as well as advances in computing resources and consequently in aerodynamic design, prognostic and health monitoring systems and lifing processes. In particular, as far as the lifing of the machine is concerned, the high pressure (HP) turbine containing the most advanced high temperature alloys and associated processing methods, as well as the combustor which represents the key components that have limited life and tend to strictly dictate the cycles of operation and the allowable time on the wing.

#### Overcoming the Use of ICEs in Hybrid Electric Vehicles with Turbomachinery – Micro-Turbine Range Extenders – Part 2

[:en]As introduced in the last blog regarding Micro-Turbine Range Extenders, we will continue the discussion of turbine engine applications in the automotive sector in this blog.

Looking to solve the problem of range anxiety in electric vehicles, many companies have started exploring the business model of recharging electric batteries in automotive vehicles with a parallel turbine engine driving a generator – coined under the term ‘micro-turbine range extender’ (or MTRE).  As seen in the turbine-powered car programs initiated in the 50s and 60s, issues with low efficiencies, slow throttle response, and capital cost of the powertrain rendered all of these programs futile shortly after their inception.  However, the revolution of electric vehicles and hybrid technologies has allowed this technology to resurface from a different direction.  With battery-driven electric motors designated as the main driver, these cars are equipped with a technology that has both energy efficient low-end torque as well as groundbreaking throttle response and many of the former drawbacks during its initial iterations are solved using an electric drivetrain.  The turbine-engine, instead of operating as the main driver, will now only operate at its most efficient power output mode and work to simply drive electricity through the generator, recharging the vehicle’s battery packs.  Acting as an isolated thermo-mechanical system, a micro-turbine range extender can be designed and optimized without having to worry about the varying duty cycles and idling that is inherent in the vehicle’s drivetrain. The thermodynamic model of a typical micro-turbine range extender can be seen below in Figure 1.

One application within commercial vehicles that has benefitted from this technology utilizes a MTRE system developed by Wrightspeed.  The specific application lies within retrofitting refuse trucks with this electric powertrain in order to help them save an estimated \$35,000 a year on fuel and maintenance costs.  In such heavy-duty applications, it is obvious that the potential for fuel cost and maintenance savings is much higher due to the large fuel burning needed for these vehicles as well as the harsh drive cycle a refuse truck goes through.  The question in the expansion of this technology generally comes in two forms: What makes the micro-gas turbine range extender a better alternative than a normal ICE hybrid option? – and – What is the viability of scaling this for consumer vehicles given the capital cost of the drivetrain?