SoftInWay Inc. delivers time and cost saving turbomachinery solutions through industry-leading consulting services, fully in-house developed software, and customizable training courses.
Technical Presentation: Case Studies of SoftInWay's Extended Simulation Capabilities with STAR-CCM+ for Turbine Applications Date/Time: January 20th, 11:30 AM EST
Technical Presentation: Case Studies of SoftInWay's Extended Simulation Capabilities with STAR-CCM+ for Turbine Applications Date/Time: January 20th, 11:30 AM EST
[:en]Any post related to analysis of turbomachinery: analyzing turbomachines, analysis best practices, etc. SoftInWay[:cn]Any post related to analysis of turbomachinery: analyzing turbomachines, analysis best practices, etc.[:]
[:en]To have a successful application of an ORC system, the availability of an adequate heat source is crucial. In principal every heat-generating process, such as burning fossil fuel, can be taken as a heat source for ORC.
However, the aim is to improve energy efficiency and sustainability of new or existing applications with the focus on waste heat and renewable energy sources.
[:en]Comparison of efficiency against power output for axial flow and radial inflow turbine configuration
The question always remains, which is better: axial or radial? But with that question are sub questions: Which application? Which fluid? What results are you looking for exactly?
In automobiles for waste heat recovery, we believe that radial inflow turbines are more suited for use. Here’s why:
[:en]In view of the large number of blades in any turbine machine, the existence of unavoidable sources of vibration excitation and the serious consequences of the failure of just one blade, an intimate knowledge and understanding of the vibration characteristics of the blades in their operating environment is essential.
The choice of the working fluid for any given application is a key issue and should be done based on specific applications to achieve maximal efficiency. For working fluids in ORC, a green energy alternative, there are some requirements to keep in mind:
•Thermodynamic performance Low pump consumption and high critical point
•Positive or isentropic saturation vapor curve Avoid wetness in flow path, i.e. avoid damages of flow path elements
•High vapor density Decrease sizes of equipment (expander and condenser)
•Acceptable pressures High pressures usually lead to higher investment cost and increasing complexity
•High stability temperature Prevent from chemical deterioration and decomposition at high temperatures
With the ongoing movement toward global environmental protection, regulations related to the exhaust emissions and fuel consumption of automobiles are being strengthened. To cope with these requirements, turbochargers are an effective tool to improve fuel consumption and reduce carbon dioxide emissions, by reducing the engine weight and friction loss.
Since a turbocharger supplies compressed air to an engine, it can reduce the engine displacement relative to an atmospheric engine for the same power. Variable geometry turbochargers, which can control the boost pressure according to the engine operating conditions, are becoming increasingly popular, creating a demand for a centrifugal compressor with a wide and stable operational range. Continue reading “At a Glance – Turbochargers”→
Last month we hosted a webinar on waste heat recovery for internal combustion engines and beyond. You can view the webinar here.
This is becoming an increasingly popular topic in our industry and we’re seeing more information being posted from other industry professionals, so we thought this would be a great time to explain some basics about this energy efficient technology.
The situation: A large part of the energy produced in an IC engine is lost to the surroundings but the waste heat from the engine exhaust and coolant is still an attractive energy source that reaches around 60% of the total energy converted from fuel. Continue reading “Facts About Waste Heat Recovery for IC Engines”→
Let’s face it, we know the operations of our gas turbines can’t all be perfect, and we’ll run through calculations, feasibility studies and more to pinpoint the exact cause. But before all of that is accomplished, you should keep a list in the back of your mind of what might be causing your loss in performance, based on common factors that affect gas turbine efficiency and more.