Below, a common way to express a crankshaft assembly with massless shaft and mass-inertia elements is presented, whereas the reciprocating and revolving mass around the crack can be expressed as follows:

Read More

#### Steam Turbine Seal Leakage Calculation in Design

As an example, steam turbine flow path seals improve overall efficiency installing various types of shrouds, diaphragms, and end seals which prevent idle leaks of working steam in the cylinders. In steam turbines, labyrinth seals are widely used. Some labyrinth seals are also used with honeycomb inserts. It is believed that the use of such seals makes it possible to achieve a certain gain due to smaller leaks of working fluid and more reliable operation of the system under the conditions in which the rotor’s rotating parts may rub against the stator elements. However, we can only consider it as a successful design if the structures are compliant with the manufacturing capabilities and have good vibration stability. [1] Furthermore, seal leakage can significantly affect efficiencies. Better seals increase efficiencies but add extra cost to both manufacturing and maintenance, so the design needs to be done with the turbine flow path design. Although modeling the seals in 3D CFD is theoretically possible, the calculation resources and time are extremely demanding.

This important task can be completed very easily with AxSTREAM NET^{TM}. AxSTREAM NET^{TM} provides a flexible method to represent fluid path and solid structure as a set of 1D elements, which can be connected to each other to form a thermal-fluid network. For each fluid path section, the program calculates fluid flow parameters for inlet and outlet cross-sections, like velocity, density, temperature, mass flow rate, etc. Therefore, the leakage from the whole system can be modeled in this network, as shown in Figure 1.

AxSTREAM NET™ is capable of doing:

- Choice of seal design at the stage of the steam/gas turbine preliminary design.
- Calculation of balances of pressures and mass flow rate to correctly account for the efficiency of the steam/gas turbine.
- Calculation of seals fluid flow parameters on the startup mode to estimate the thermal expansion of rotor and casing element.
- Calculation of thermal boundary conditions for thermo stresses estimation.

#### Steam Turbine Aerodynamic Improvements for Significant Efficiency Gains

The steam turbine is one of the most important power generating equipment items in use. Around half of the electricity generated worldwide comes from steam turbines. Steam turbines can be fueled by coal, nuclear energy, petroleum or natural gas, alternatively by biomass, solar energy or geothermal energy. Thus a large amount of fuel can be saved and CO2 emissions significantly reduced by optimizing key components of these widely used machines.

An important goal in steam turbine technology is to improve efficiency. The continuous flow of steam conditions is one of the commonly accepted efficiency contributor for steam power plants. The chart below shows expected improvement in thermal efficiency for USC double-reheat fossil-fuel power units compared to common supercritical-pressure ones, according to Hitachi.

Besides steam condition elevation, other areas help the development and refinement of innovative aerodynamic flow path design approaches and the improvement of design procedures for nozzle and blades design and analysis. Continuous growth of steam conditions since the mid-1990s and some advanced steam path design for large steam turbines have brought about 5% of efficiency gain. This effect is almost the same as the transition from subcritical-pressure steam conditions to the supercritical-pressure ones with elevated steam temperatures illustrated in the figure above. Here are some practical examples of steam turbines high efficiency, achieved during the last decade by advanced aerodynamic design (source: Leizerovich, A. Sh. Steam turbines for modern fossil-fuel power plants, ©2008 by The Fairmont Press).

Read More

#### 1.1 Mathematical Models and the Object Design Problem

Key Symbols

Indexes and Other Signs

Abbreviations

The methodology of a turbine optimal design as a complex multi-level engineering system should support the operation with diverse mathematical models, providing for each design problem communication between the neighboring subsystems levels.

One approach to turbine design with using of block-hierarchical representation consists in the transition from the original mathematical models for the subsystems and numerical methods of optimization to “all-purpose” mathematical model and general method of parameters optimization.

We will specify as original the mathematical model (OMM), which is a closed system of equations that describe the phenomena occurring in the designed object.

Regardless of the mathematical apparatus (algebraic, ordinary differential, integral, partial differential equations, etc.), OMM can be represented symbolically as follows:

where X ⃗={x ⃗,u ⃗ };L(B ⃗,X ⃗) – the operator defining the model’s system of equations.

#### Aerospace Industry and Propulsion Advancements – A Teaser for the Farnborough International Airshow

For a low carbon aviation to be achieved, a lot of effort is currently put on the aircraft-propulsion integration. Low-pressure-ratio fans are one of the concepts that is being studied in this regard. The lower the pressure across the propulsive element the more the exhaust velocities will decrease and therefore the higher the propulsive efficiency will be. However, a constant level of thrust would require an increase of the fan area, which could lead to an increase of the total weight of the configuration and ultimately cancel the efficiency benefits of the concept.

Read More

#### Organic Rankine Cycles: Low Temperature, High Efficiency

ORC (meaning organic Rankine cycle, not the scary monsters from Lord of the Rings) is one WHR solution which delivers additional power from the turbine/engine exhaust gas/steam energy. ORC systems operate on hydrocarbon-based fluids which effectively avoid the typical disadvantages associated with water-based steam turbine systems while bringing the advantage of better performance at part load and in non-continuous operation. ORC systems, capable of utilizing low temperature heat sources of 100-200°C, can be designed in compact and modular packages which require very little maintenance.

The design criteria of an ORC system and its components includes finding the maximum possible heat recovery from the available high and low temperature waste heat flows of a turbine or ICE to produce the maximum amount of additional power while decreasing the load on the turbine’s cooling system, under certain restrictions like geometry and cost.

The first step is to design the thermodynamic cycle configuration. Figure 1 is a flow diagram of a dual loop supercritical organic Rankine cycle (SORC) with separate turbines and given design parameters of the components, generated with AxCYCLE™ software, developed by SoftInWay. The cycle consists of 6 heat exchangers, 2 turbines (HPT and LPT), 2 pumps (HPP and LPP) and the condenser. Both turbines operate with the same backpressure – 1.3 bars. The flows of the working fluid (R245fa in this case) are mixed at the condenser inlet and split at its outlet. The temperature – entropy diagram for the presented cycle is shown on Figure 2. The process 1-2-3-4-5-1 corresponds to the high pressure loop operation and the process 10-20-30-40-10 is for the low pressure loop operation. All these can be easily manipulated and obtained with user-friendly interface of AxCYCLE™.

In terms of component design, ORC turbines can be of axial, radial inflow and radial outflow configurations. The type of turbine you should select depends on the application. To delve further into the topic, check out SoftInWay’s webinar on “Radial Inflow versus Outflow Turbines – Comparison, Advantages and Applicability” here – http://learn.softinway.com/Webinar/Watch/102

Read More

#### [:en]Optimization of Axial Turbine Flow Paths: Preface [:]

Key Symbols

Indexes and Other Signs

Abbreviations

The decades of the 1970s and 1980s of the last century were marked by the emergence and rapid development of a new scientific direction in turbine manufacturing – optimal design. A summary of the approaches, models, and optimization methods for axial turbine flow path is presented in the monographs [13–15 and 24].

It should be noted that work on the optimal design of the flow path of axial turbines and the results obtained not only have not lost their relevance, but are now widely developing. Evidence of this is the large number of publications on the topic and their steady growth. Optimization of the turbomachine flow path is a priority area of research and development of leading companies and universities.

Without the use of optimization, it is impossible nowadays to talk about progress made in the creation of high efficiency flow paths of turbomachines. It is worth noting that the widespread use in power engineering of modern achievements of hydro-aerodynamics, the theory of thermal processes, dynamics and strength of machines, materials science, and automatic control theory, is significantly expanding the range of tasks confronting the designer and greatly complicating them.

The proposed book comprehensively addresses the problem of turbomachine optimization, starting with the fundamentals of the optimization theory of the axial turbine flow paths, its development, and ending with specific examples of the optimal design of cylinder axial turbines. It should be noted that the mutual influence of designed objects of turbine

installations and the many design parameters of each object, which the product’s effectiveness depends on, is putting the task of multiparameter optimization on the agenda.

For turbines with extractions of working media for various needs, efficiency ceases to be the sole criterion of optimality. It is necessary to enable in the optimization process such important parameters as power supply. The task of optimal design of turbine has become multifaceted. It should also be stressed that often the turbo installation mode of operation is far from nominal. So taking into account the operating mode in the optimization can significantly improve the efficiency of the turbine.

In the book, along with the widely used methods of nonlinear programming, taking into account the complexity of the task and the many varied parameters, the use of the theory of planning the experiment coupled with the LP sequence to find the optimal solution is discussed. The first chapter of the book deals with general issues of the optimal design of complex technical systems and, in particular, the problem of optimization of turbomachines, using one of the approaches to the design of turbo installations – a block-hierarchical view of the design process. With this priority is given to flow path optimization of axial turbines. The task of object design and using mathematical models is formulated. A brief overview of optimization techniques, including the optimization method for turbines considering mode of operation is given.

Read More

#### Solar Energy – What is it and How is it Used?

As you can imagine this post is about the sun. (By which, I mean the star closest to us, but similar principles would apply to other solar systems). The emphasis will be made on understanding what this energy is, and how we can harness it.

First, let’s discuss solar energy in general. As its name suggests, this type of energy comes from the sun. (*Solaris* means sun in Latin and is where our word solar comes from). So far, so good. Now, even though “radiation” gets a bad reputation, this is actually how the heat and energy from our star reaches us. The radiation is produced by nuclear reactions in our sun’s core. Two hydrogen atoms get fused together to form one helium atom. The chemical reaction releases heat and light. And all of this is occurring inside the sun 93 million miles away in space. The light and heat travel through space. Then some of that energy, in the form of radiation, reaches us here on Earth.

Now that we know what energy solar energy is and where it comes from, let’s briefly discuss the processes we currently have to capture this energy and what uses we can make of it.

There are primarily two types of sun power harnessing systems:

- Solar panels
- Concentrated Solar Power (also known as CSP)

Solar panels are typically photovoltaic (PV) which means that they will convert photon energy (photo) into electricity (voltaic). When you think of such technology the roof of houses and office buildings (PV panels – comprised of several PV cells) is usually the first example to come to mind. But, don’t forget the small solar cells used to power your calculator (PC cell), or the much larger installations on the side of the highway (PV arrays – comprised of multiple PV panels). After capturing this solar energy, you can either use it for your personal needs, or in some cases you can sell it back to the grid. Note: Amazon recently completed its 17^{th} rooftop solar project by installing a 1.1 MW array on its Las Vegas fulfillment center (https://www.renewableenergyworld.com/articles/2018/05/amazon-s-onsite-solar-just-went-up-a-notch.html).Another way solar panels work for domestic application is to circulate a liquid through the panels to heat the home (air heating, water heating, and so on).

CSP use a different technology altogether. Fields of mirrors (that rotate with the sun) are used to concentrate the energy from the sun into what is called a “black body”. In heat transfer terms, this refers to something that has a high thermal coefficient (emissivity) and typically sits at the top of a tower. If you have ever used a magnifying glass to concentrate solar energy on some dry twigs to start a fire, you have seen how effective this approach can be.

The previous blog post of this series mentioned that both nuclear and solar sources were considered clean energies with solar being renewable while our sun still shines. What makes it clean exactly? I am glad you asked! (I know you did not, but let’s pretend you did.) To quote my last post, clean energies are defined as “energies that do not pollute the atmosphere when used.” With solar energy, the process of energy creation is indeed harmless to the surrounding. The environmental impact of the systems to manufacture items needed to capture the solar energy and recycling/disposing of waste products from that process may pollute. Some will argue that solar arrays can be a visual pollution, but that objective opinion does not make solar a “dirty” energy since gathering the energy neither produce pollutants nor emits carbon dioxide.

Read More

#### Birth, Fall and Resurgence of Gas Turbine Technology for Trains

#### Pump Characteristic Curves

**Introduction**

A pump is a hardware, which feeds energy to a fluid (e.g. Water) to flow through channels. Pumps are used, for example, to direct water out of the ground, to transport drinking or sewerage water over large distances in combined pipe networks or to discard water from polders. In any practical application, the pump needs to work with its best performance. It is also important to check that the flow rate and head of the pump are within the required specifications, which are normally presented as the *Pump Characteristic curves*. These plots play an important role in understanding the region in which the pump needs to be operated thus ensuring the life of the pump.

**Pump Characteristic Curves**

The performance of any type of pump can be shown graphically, which can be based on either the tests conducted by the manufacturer or the simulations done by the designer. These plots are presented as *Pump Characteristic Curves.* The hydraulic properties of any pump (e.g. Centrifugal Pump) can be described by the following characteristics.

- Q-H Curve
- Efficiency Curve
- Net Positive Suction Head (NPSH) Curve

__Q-H Curve __

__Q-H Curve__

The Q-H curve gives the relation between the volume flow rate and the pressure head, i.e. the lower the pump head, the higher the flow rate. Q-H curves are provided by the manufacturer of the pump and can normally be considered as simple quadratic curves.

Read More