A Century of Chiller Technology

A convergence of technologies had to occur to make the modern, high-efficiency centrifugal chiller a reality. To appreciate the technology fully, we must go back in history and understand the origins of the air conditioning and refrigeration industry. Along the way, we will find an important diversion in aerospace and the critically important centrifugal compressor. Ultimately, we will find that the modern chiller is a testament to advanced technology that was developed in multiple fields.

Some of the first advances in and applications of modern industrial refrigeration were in the United States. In May 1922, Willis Carrier revealed the “Centrifugal Refrigeration Machine” – a very early incarnation of what we now call a chiller [1]. The first installation went to a Philadelphia candy manufacturer; it’s interesting to know that the birth of modern refrigeration and air conditioning started on a large scale. Back in those days, economy of scale enabled the technology to be developed. It was not until a decade later that the core technology began to be adopted into compact units that could be used in smaller businesses such as boutique shops. It took several more decades for smaller residential air conditioners to take off commercially.

Shown in the photograph below is Carrier’s first centrifugal chiller in his New Jersey factory [1].

First Centrifugal Chiller
Photo from [1]
The size of this machine is evident, as is the fact that its design, at the time, necessitated components be spread out in space for assembly and maintenance. By modern standards, the same footprint space could be used to accommodate a modern chiller with over 500 refrigeration tons in capacity. By comparison the original design has less than 100 refrigeration tons of capacity.

Read More

Combined Cycles – A Brief History and Evolution of Cycles

Combined power cycles are a common source of energy, since they offer higher energy efficiency while also making use of common technology. The idea of combining two different heat-engine cycles, however, has been around longer than you think. Today’s blog is going to cover the basics of combined cycle power plants, and their history of how they went from experiments to one of the most common sources of energy in the United States, for example. But how did this come to be, and what really is a combined cycle?

An animated exterior of a combined cycle power plant, image courtesy of General Electric
An animated exterior of a combined cycle power plant, image courtesy of General Electric

Basics

At its most basic form, a combined cycle is the synthesis of two independent cycles into one, which allows them to transfer thermal energy into mechanical energy, or work. On land, this is typically seen in power-generation, so the heat of these two cycles makes electricity. At sea, many ships operate using combined power cycles, but instead of just electricity, the mechanical energy is put to work by propelling the ship as well as providing onboard power.

Read More

Hydrogen in Combined Cycles

Hydrogen is a clean and carbon-free fuel and is considered a key element for energy transition. Renewable power generation by solar and wind is increasing, which requires flexible operation to balance the load on the energy grid with the ability to rapidly adjust the output. Gas turbines with a combustion system for hydrogen operation offers a low carbon solution to support the stability of the energy grid. This provides a solution to the need for energy storage, in the form of hydrogen, and flexible power generation.

Discharging green-house gases and particulates into the atmosphere has an impact on the global climate. With this current trend of increasing awareness towards the environment, alternative fuels are again being examined to reduce the impact of emissions. Hydrogen is perceived as the only long-term solution to global warming concerns. It is also the only fuel that can create large reductions in carbon emissions. There are zero CO2 emissions produced in hydrogen combustion. Hence, NOx emissions are the only remaining concern. Micro-mix combustion is used to implement miniaturized diffusive combustion to combust hydrogen with low emissions. With miniaturized diffusive combustion, local flame hot spots, which are caused by arising stoichiometric conditions of hydrogen, are reduced substantially with an increase in the local mixing intensity. Improvements in the mixing quality provide reduced emissions of NOx with a more balanced flame profile. Micro-mix combustion was also studied with different mixtures of fuels including hydrogen, kerosene and methane establishing an adaptive combustors [1,2].

Power generation systems based on hydrogen could be an important alternative to conventional power systems based on the combustion of fossil fuels. The main effort in the field is oriented towards the use of hydrogen in fuel cells and combustion with gas turbines. Consider the main options for combined cycles based on a hydrogen-fueled gas turbine unit shown in Figure 1.

Basic Simple and Combined Co-generation Cycles

Figure 1. Brayton - Rankine combined cycle
Figure 1. Brayton – Rankine combined cycle

One of the most widely used combined cogeneration cycles is the Brayton – Rankine cycle. This cycle is a symbiosis of the Brayton (simple cycle gas turbine) cycle and the Rankine (steam turbine) cycle.

Figure 2. Typical efficiencies of various types of plants
Figure 2. Typical efficiencies of various types of plants [3]
Figure 2, above, shows the efficiency of the power plant depending on the type of cycle. The power plants referenced are: the simple cycle gas turbine (SCGT) plants with firing temperatures of 2400°F (1315°C); recuperative gas turbine (RGT) plants, where the exhaust gases from the turbine are used to heat the incoming air to the combustion chamber; the steam turbine plants; the CCPPs; and the advanced combined cycle power plants (ACCPs), such as CCPPs using advanced gas turbine cycles. Read More

Single-Shaft Combined Cycle Power Plant: a Great Invention or an Elaborate Joke?

Introduction

A combined cycle power plant (CCPP) uses both steam and gas turbines which increases the efficiency up to 50 percent compared to a simple-cycle plant. Conventional CCPP applications use separate gas and steam turbines and route the waste heat from the gas turbine to the nearby steam turbine to generate extra power. In recent years, an alternative design for a CCPP has been developed with single-shaft rotors.

So, what are the drawbacks and advantages of single-shaft CCPP design? Is it both possible and (more importantly) a good idea to have a single-shaft CCPP? To answer that we need to look at how one would work.

The typical steam and gas turbine rotors for a conventional CCPP application (high power ~200MW) are presented in Figure 1. The first power train (gas turbine) consists of a generator, compressor, and gas turbine parts. The second power train (steam turbine) contains high-intermediate and low-pressure turbine rotors and another generator.

Separate Gas Turbine and Steam Turbine Rotors
Fig. 1 – Separate gas turbine and steam turbine rotors (AxSTREAM RotorDynamics models)

In a single-shaft application, only one generator would be driven by the gas-steam-turbine power train. An optimal variant would be to have the generator between the gas turbine and a steam turbine as shown in Figure 2. Read More

Gas Turbine CFD – Driving Innovation with Data and Insight

This is an excerpt from the Siemens Blog. You can read the full version here.

Originally Written By Chad Custer – February 2, 2021

Once upon a time in a world without gas turbine CFD simulation.

Manager: The design team came up with a new blade concept, but they need to know the maximum possible temperature in the machine.

Test engineer: Anywhere in the whole machine?

Manager: Yes. And for any operating condition the machine might get used for. How long until you can have those results to the team?

Test engineer: Uhh

Terms like “virtual prototype”, “simulation testbed” and “digital twin” have become so common that you may dismiss them as buzzwords. However, to me, these terms not only still have meaning. These words do drive how I look at simulation. Read More

Waste Heat Recovery

During industrial processes, an estimated 20 to 50% of the supplied energy is lost, i.e., by dumping the exhaust gas into the environment [1]. The waste heat losses and the potential work output based on different processes including but not limited to the ones shown in Figure 1. Does it REALLY have to be thrown away? Sometimes yes, other times no. In this blog post, we will focus on the “no” through a process  called “Waste Heat Recovery”.

Waste heat losses and work potential of different process exhaust gases - Image 1
Figure 1: Waste heat losses and work potential of different process exhaust gases [US Department of Energy [2]]
Some well-known examples of waste heat recovery processes are found in turbochargers in cars or a heat recovery steam generator. One simple structure of application is when a heat exchanger is fed with the exhaust gas of a turbine, therefore being cooled down before being released into the air. This heat exchanger is part of a secondary (bottoming) cycle where another turbine provides additional power output without having to burn additional fuel. This heat exchanger is part of a secondary cycle where another turbine provides additional power output. Read More

Design of Waste Heat Recovery System based on ORC for a Locomotive Gas Turbine

This is an excerpt from a technical paper, presented at the Asian Congress on Gas Turbines (ACGT) and written by Abdul Nassar, Nishit Mehta, Oleksii Rudenko, Leonid Moroz, and Gaurav Giri. Follow the link at the end of the post to read the full study!

INTRODUCTION

Gas turbines find applications in aerospace, marine, power generation and many other fields. Recently there has been a renewed interest in gas turbines for locomotives. (Herbst et al., 2003) Though gas turbines were first used in locomotives in 1950 – 1960’s, the rising fuel cost made them uneconomical for commercial operation and almost all of them were taken out of service. The diesel locomotives gained popularity and presently locomotives are operated by diesel engines and electric motors. The emission levels in diesel locomotives have raised concerns among the environmentalists, leading to stringent emission norms in recent years. One of the solutions to reduce emission for these locomotives is to switch to LNG fuel which requires huge investment in upgrading the engines to operate with LNG. The other alternative is Gas Turbine based locomotives and this has gained renewed interest with RZD and Sinara Group of Russia successfully operating LNG based Gas Turbine-electric locomotives. Fig. 1 shows the GT1-001 freight GTEL from Russia, introduced in 2007. It runs on liquefied natural gas and has a maximum power output of 8,300 kW (11,100 hp). Presently, this locomotive holds the Guinness record for being the largest gas turbine electric locomotive (Source: http://www.guinnessworldrecords.com). Though there have been a lot of improvements in gas turbines, the thermal efficiency is still not very high unless the exhaust heat is efficiently utilized by a bottoming cycle.

Fig. 1 Russian GT1_001 gas turbine locomotive

Converting the gas turbine into a combined cycle unit, with a bottoming steam cycle, is employed in case of several land-based and marine applications; however, such an option is not practical in a locomotive gas turbine due to the requirements of steam generators, steam turbines and other auxiliaries. The next best alternatives are to utilize either an organic Rankine cycle (ORC) or a supercritical carbon dioxide cycle (sCO2) to extract heat from the exhaust of the gas turbine and convert it into useable energy in the bottoming cycle (Rudenko et al., 2015; Moroz et al., 2015a; Moroz et al., 2015b; Nassar et al., 2014; Moroz et al., 2014). Supercritical carbon dioxide cycles, operating in a closed-loop Brayton cycle, are still in research phase. There is not much practical experience in deploying an sCO2 unit for propulsion gas turbines even though there is considerable research currently in progress. Hence, the obvious choice is to incorporate an ORC based system which is compact, modular and easy to operate. The same concept can also be implemented in any gas turbine application, be it a land-based, power generation, or marine application. Read More

Optimization of the Closed Supercritical CO2 Brayton Cycle with the Detailed Simulation of Heat Exchangers

Recently scientists and engineers have turned their attention again to carbon dioxide as a working fluid to increase the efficiency of the Brayton cycle. But why has this become such a focus all of a sudden?

The first reason is the economical benefit. The higher the efficiency of the cycle is, the less fuel must be burned to obtain the same power generation. Additionally, the smaller the amount of fuel burned, the fewer emission. Therefore, the increase in efficiency also positively affects the environmental situation. Also, by lowering the temperature of the discharged gases, it is possible to install additional equipment to clean exhaust gases further reducing pollution.

So how does all of this come together? Figure 1 demonstrates a Supercritical CO2 power cycle with heating by flue gases modeled in AxCYCLE™. This installation is designed to utilize waste heat after some kind of technological process. The thermal potential of the exhaust gases is quite high (temperature 800° C). Therefore, at the exit from the technological installation, a Supercritical CO2 cycle was added to generate electrical energy. It should be noted: if the thermal potential of waste gases is much lower, HRSG can be used. More information on HRSG here: https://blog.softinway.com/en/introduction-to-heat-recovery-steam-generated-hrsg-technology/

Any cycle of a power turbine installation should consist of at least 4 elements : 2 elements for changing the pressure of the working fluid (turbine and compressor) and 2 elements for changing the temperature of the body (heater and cooler). The cycle demonstrated in Figure 1 has an additional regenerator, which makes it possible to use a part of the heat of the stream after the turbine (which should be removed in the cooler) to heat the stream after the compressor. Thus, part of the heat is returned to the cycle. This increases the efficiency of the cycle, but it requires the introduction of an additional heat exchanger.

The heat exchangers used in the sCO2 cycle are of three basic types: heaters, recuperators, and coolers. Typical closed Brayton cycles using sCO2 as the working fluid require a high degree of heat recuperation.

Supercritical CO2 Power Cycle with Heating by Flue Gases
Figure 1 – Supercritical CO2 Power Cycle with Heating by Flue Gases

Having examined this scheme and examined the process in detail, we can draw the following conclusions about the advantages of this cycle which is demonstrated in Figure 2: Read More

Combined Power Cycles: What Are They and How Are They Pushing the Efficiency Envelope?

Combined cycle power plants have introduced a significant increase in efficiency compared to simple cycle power plants. But what is a combined cycle power plant and how does it work?

What is a Combined Cycle Power Plant?

In simple terms, a combined cycle power plant is a combination of more than one type of cycle to produce energy. A combined cycle plant consists of a topping and bottoming cycle with the objective to maximize the energy utilization of the fuel. The topping cycle normally is a Brayton cycle based gas turbine while the bottoming cycle is a Rankine cycle based steam turbine.

Gas turbines are used because this equipment can very efficiently convert gas fuels to electricity with the choice of using different fuels. Recently, the simple cycle efficiencies of gas turbines have improved considerably. As an example, standard fossil fired Rankine cycles with conventional boilers have an efficiency in the range 40–47% depending on whether they are based on supercritical or ultra-supercritical technology. By utilizing waste heat from the heat recovery of the steam generators to produce additional electricity, the combined efficiency of the example power plant would increase to 60% or more. Combined cycles are the first choice if the goal is to generate maximal energy for a unit amount of fuel that is burnt.

Why Don’t all Power Plants Use Combined Cycles

You might be wondering why not all plants are based on the combined cycle. The primary reason is fuel availability. Not all regions are blessed with the availability of gas that can be easily utilized in a gas turbine. Transporting gas from one location to another, or converting a fuel to gas specifically for operating a gas turbine, may not be the best economic decision. The technological expertise required in maintaining a gas turbine is another challenge faced by gas turbine operators. A typical combined cycle plant is presented in Figure 1.

Schematic of a combined cycle power plant created in AxCYCLE
Figure 1. Schematic of a Combined Cycle Power Plant Created in AxCYCLE

The key component of the combined cycle power plant apart from the turbines is heat recovery steam generator (HRSG). The major objective is to convert maximal heat from the exhaust gas of the gas turbine into steam for the steam turbine. The HRSG, unlike the conventional boiler, will operate at a lower temperature and is not subject to the same temperature as the boiler furnace. The exhaust gas from the gas turbine is directed through the tubes of the HRSG wherein water flowing through these tubes, observes heat and converts into steam. The temperature of the live steam is in the range of 420 to 580 C with exhaust gas temperatures from the gas turbine in the range of 450 to 650 C. A supplementary burner could be included in the HRSG, but adding a supplementary burner reduces the overall cycle efficiency. Read More

Turbomachinery CFD Simulation: Art in Motion

This is an excerpt from the Siemens Blog. You can read the full version here.

Originally Written By Justin Hodges - July 14, 2020  

Turbine blade simulation juxtaposed with turbine blade art. The resemblance is uncanny! 

Believe it or not, there is some true art in turbomachinery CFD simulation. From the creamer in your coffee to the tumbling of flow through a small waterway. There is something palpable with intrigue when observing fluid flows in our everyday routines. As computational fluid dynamics practitioners, we are fortunate to have a unique opportunity. That is to simulate and observe these same curious fundamentals of turbulence and fluid flow until our heart is content.

Read More