Co-generation Power Plants

The Kendall Cogeneration Station in Cambridge, MA
The Kendall Cogeneration Station in Cambridge, MA

Co-generation power plants are very popular in Europe compared to the U.S. market. It will be interesting to see if this type of application will take off in North America, but I’d like to share a little background information on co-generation first.
(more…)

Radial versus Diagonal Diffusion in Multi-Stage Pumps

[:en]
radialanddiagonaldiffusion
Radial and Diagonal Diffusion

Although crossover design has only a secondary effect on pump efficiency, it too should use every available trick to achieve the best possible results.

This picture (left and below) shows short and long configurations of the two basic types of crossovers normally used on multi-stage pumps. Both have been tested by the West Coast pump companies and the results of these tests indicate that the radial diffusion type is approximately one point more efficient than the diagonal diffusion type. Here’s why: (more…)

Let’s Talk About Centrifugal Compressors

[:en]
centrifugalcompressordesign
Centrifugal Compressor Design

We all know by now that no machine is perfect. Turbines have carryover losses, pumps experience cavitation phenomena, and compressors certainly have their fair share of pros and cons. We’re on the hunt for some common design problems – perhaps problems that you have experienced yourself, with centrifugal compressors. We scoured through our technical papers and presentations and searched the web for some. Here’s a list of frequent concerns and questions we ran into: (more…)

Shortening Start-Up Time and Life Prediction of Critical Components

[:en]
steamturbine
Steam Turbine

This month we’re hosting the third segment to our Steam Turbine Webinar Series.

Shortening Start-Up Time and Life Prediction of Critical Components

Shortening  turbine start-up is a main concern for power machinery operators and manufacturers – is it a concern of yours? (more…)

New Waste Heat Recovery Features in AxCYCLE Available Now

[:en]
AxCYCLE IC engine
AxCYCLE IC engine

Have you checked out AxCYCLE recently?

SoftInWay officially announced the latest features with the release of version 2.3.

With this update, the system’s new tools are available to all users, but waste heat recovery application engineers, particularly in the automotive industry, should take notice. (more…)

Goodbye February, Hello March!

keepcalmandenjoytheweekendHello all you hardworking professionals!

We at SoftInWay want to wish everyone a happy, healthy weekend as we draw February to a close – we have all earned this weekend, we’ve worked hard all week. Right?

But the excitement doesn’t stop there. Come Monday morning, we have a new, clean slate to fill with ideas, projects, services and awesome opportunities for you! (more…)

5 Steps to Advanced 3D Blade Design

[:en]
3dbladedesign
3 Blade Design

To decrease losses and increase performance of a turbine, we need to develop special (compound) geometries. Here’s your turbomachinery cheat sheet to advanced 3D blade design!

1. Optimizing plane profiling

There are several positive things that can give proper plane sections profiling: decreasing the profile losses, decreasing secondary losses and satisfying structural limitations. (more…)

Should You Be Implementing the Organic Rankine Cycle?

[:en]To have a successful application of an ORC system, the availability of an adequate heat source is crucial. In principal every heat-generating process, such as burning fossil fuel, can be taken as a heat source for ORC.

However, the aim is to improve energy efficiency and sustainability of new or existing applications with the focus on waste heat and renewable energy sources.

Three sectors have been identified as potential sources for the application of ORC power generation: (more…)

Waste Heat Sources + Trends

Waste Heat losses and Work Potential from Selected Processes
Waste Heat losses and Work Potential from Selected Processes

You might be able to name a few sources of waste heat, but do you know what distributes the largest content?

Waste heat losses arise both from equipment inefficiencies and from thermodynamic limitations on equipment and processes. (more…)

Components of an ORC Cycle

[:en]
Schematic of an ORC system (R245fa is used here)
Schematic of an ORC system (R245fa is used here)

Organic Rankine Cycle (ORC) is a technology that can convert thermal energy at relatively low temperatures (80 to 350°C or 175 to 660°F) to actual work that can be further converted into electricity.

It is basically a thermodynamic cycle according to the Rankine principle but specifically uses organic fluids in order to have a boiling point at relatively low temperatures.

 

The heat is used to make the liquid boil and generate high pressure gases that will then drive equipment able to transmit torque to the shaft and create electrical power.
There are two main types of machines that are able to do this
• Turbine-based system
• Reciprocating piston-based system (more…)