Aircraft Fuel Systems

The airplane is a complex technical object. Like a human or other organisms, it consists of numerous vital systems; with one of the more critical ones being the fuel system. It is important part of any vehicle, let alone aircraft, aside from  the newest electric powered vehicles.

An aircraft’s fuel system provides fuel that is loaded, stored, managed and transported to the propulsion system of the vehicle[1, 2]. As aviation fuel is liquid, this system can be considered as hydraulic. Therefore, it’s able to be mapped out and modeled for analysis in a program like AxSTREAM NET™.

The Typical Fuel System of a Narrow-body Passenger Plane

For an example of a conventional aviation fuel system, consider a typical narrow-body airliner with two engines. Some of the popular planes in this category include the Boeing 737, the Tupolev Tu-204, Airbus A320, Comac C919, Sukhoi Superjet 100, Bombardier CRJ, Embraer E-Jet and Mitsubishi Regional Jet[3].

The storage fuel system is shown in figure 1 is for the Boeing 737-300. The fuel is kept in an integral tank that is divided to five separate subdivisions. They are the central, wing (main) and surge tanks[4].

Storage fuel system of a Boeing 737
Figure 1 – Storage Fuel System of a Boeing 737-300 [4]
The hydraulic scheme of the Boeing 737’s fuel system is shown in Figure 2. For fueling and defueling the storage system there are ports on the starboard wing. The system does not have pumps to onboard fuel, so fuel is pumped into the plane via a fuel truck. The other critical part of the fuel system is the line which delivers fuel to the two engines and the auxiliary power unit. In this line there are two boost centrifugal pumps by each engine.
Read More

Centrifugal Compressor Reverse Engineering and Digital Twin Development

Centrifugal Compressors are the turbomachines also known as turbo-compressors, and belong to the roto-dynamic class of compressors. In these compressors the required pressure rise takes place due to the continuous conversion of angular momentum imparted to the working fluid by a high-speed impeller into pressure. These compressors are used in small gas-turbines, turbochargers, chiller units, in the process and paper industries, oil & gas industries and others.

The design and manufacturing of such compressors are always challenging because of its 3-dimensional shapes, high rotational speeds that interact with different loss mechanisms, and stringent working environments. In many circumstances, it is necessary to analyze an existing compressor, with the end goal being to redesign it, enhance its performance, or to use it in completely different applications. In order to meet such requirements, reverse engineering is a viable option. With reverse engineering, one can review competitor’s design to remain in market competition.

Reverse Engineering

Reverse engineering allows us to collect incomplete or non-existing design data and manufacture an accurate recreation, safely, of the original product or component.

Sometimes, it is also referred to as back engineering, in which centrifugal compressors or any other product are deconstructed to extract design information from them. Oftentimes, reverse engineering involves deconstructing individual components like the impeller or diffuser of larger compressors. End-users often use this approach when purchasing a replacement impeller or any other compressor part from an OEM is not an option. In some cases, where older impellers that have not been manufactured for 20 years or more, the original 2D drawings are no longer available.  When this is the case, the only way to obtain the design of an original compressor is through reverse engineering.

Reverse engineering requires a series of steps to gather precise information on a product’s dimensions. Once collected, the data can be stored in digital archives. Figure 1 (left) shows the typical process of reverse engineering. In figure 1 (right), one can see the scanning process of the centrifugal impeller using a laser scanner.

Figure 1 (left) Reverse Engineering Process (right) Scanning of impeller
Figure 1 (left) Reverse Engineering Process (right) Scanning of Impeller. Source

To reverse engineer an impeller or any other part of compressor, an organization will typically acquire the component and take it apart to examine its internal mechanisms. This way, engineers can unveil information about the original design and construction of the product. One can start by analyzing the dimensions and attributes of the impeller and make measurements of the blade widths, diameters and angles, as these dimensions often relate to the compressor’s performance. Read More

Hans von Ohain – The Other Father of Jet Engines and the Gas Turbine

The question of who invented the jet engine is often met with two different answers, and neither is really wrong. In fact, we posed this question on our LinkedIn page, and got the same mixed results seen elsewhere.  Both Sir Frank Whittle and Hans von Ohain were responsible for inventing the turbojet engine at the same time. While Dr. von Ohain knew of Sir Frank’s work, he did not draw information from, while Sir Frank was unaware that anyone else was designing a turbojet engine.  While we’ve covered Sir Frank Whittle before, today we’ll be looking at the life of Hans von Ohain, his invention of the turbojet, and his contributions to turbomachinery engineering.

Dr. Hans von Ohain
Dr. Hans von Ohain

Dr. Hans Joachim Pabst von Ohain was born on December 14, 1911 in Dessau, Germany. He went to school at the University of Göttingen where he received his PhD in Physics and Aerodynamics in 1935. During his studies and following his graduation, he was captivated by  aviation and airplane propulsion, with a specific interest in developing an aircraft that did not rely on a piston-driven propeller. According to the National Aviation Hall of Fame, he “conceived the idea for jet propulsion in 1933 when he realized that the great noise and vibrations of the propeller piston engines seemed to destroy the smoothness and steadiness of flying”. (1) Read More

Modern Challenges in Aviation Propulsion Systems

Introduction

Aviation is coming into a new age of carbon free energy, similar to what is being explored with ground transportation. Currently, aviation transportation generates about 2.5% of the global CO2 emission [1]. Several countries have introduced targets to achieve net-zero emissions by 2050 [2].

Many aerospace teams have joined the great engineering challenge to change the future of aviation.  With this, a number of different types of aircraft with different types of propulsion systems have been proposed.

Hybrid Propulsion System

The first step to a carbon-free propulsion system is hybrid technology. This kind of power plant increases efficiency, decreases emission of greenhouse gases and uses a traditional engine to produce electricity and electric motors to drive the fans or propellers [3].

The chemical engines operate at optimal conditions at any mode of a route. On the other hand, the electric motor is able to work in generator mode, using the kinetic energy of the vehicle during deceleration.

Hybrid propulsion energy system
Figure 1 – Hybrid propulsion energy system

The hybrid aircraft is classified by several attributes. Using thrust devices, we will consider the two base types of propellers and fans. Read More

2020 – The Most Challenging Year in Recent Memory Comes to a Close Pt. 2

Part 1

Turbomachinery, Humanized

The SoftInWay turbomachinery blog is known for its technical breakdowns and explanations of mechanical engineering theory and practices, as well as introductions to things like rotor dynamics. This year however, the marketing team also wanted to cover some of the individuals behind the advances in turbomachinery and engineering by looking at figures like Sir Frank Whittle and Sir Charles Parsons among others.

We looked at the big picture, and why the developments of the steam and gas turbines were so crucial to mankind. In addition to the revolutionary changes in global transportation brought about by jet engines and steam turbines, we also examined the turbocharger, which has become a game changer in the automotive industry as automakers are locked in a race to improve engine performance and fuel economy while reducing greenhouse gas emissions. After all, why learn the theories of mechanical engineering if not to make advances in science, technology, and society overall? Read More

2020 – The Most Challenging Year in Recent Memory Comes to a Close Pt. 1

Part 2

We’ve done it! We have reached the finish-line for 2020, and by golly did it not come soon enough. Here at SoftInWay, the trials and tribulations brought on by the events of 2020 were felt, but thanks to the support of our partners, friends and customers, we were able to close out the year strong. So what did SoftInWay do this year?

Siemens Partnership

Siemens Partnership

Right at the beginning of 2020, SoftInWay, Inc. officially entered a new partnership with Siemens Digital Industries. As SoftInWay has reigned as the turbomachinery master, we realize that turbomachinery component and system design is often part of a much greater system. As deadlines on projects become tighter, and project budgets decrease in the face of rising expenses, it has become more important than ever to have a streamlined workflow and toolset. Enter the SoftInWay/Siemens partnership. Thanks to this new enterprise, SoftInWay offers joint software solutions to mechanical engineering and turbomachinery companies. Industry standard tools like STAR-CCM+, Simcenter 3D, and NX CAD are now offered alongside the AxSTREAM platform. These gold-standard tools cover everything from component preliminary design to advanced heat transfer analysis, finite-element analysis, and CFD analysis, with results generated in a matter of hours. Read More

Modeling and Simulating Bearings/Bearing Leakages

Bearings are very important machinery components since they dominate machine performance. Almost all machines and mechanisms with a rotating part, from the smallest motor to the largest power plants, from turbomachinery to reciprocating engines, and other industrial equipment our modern society relies upon, could not function without the use of bearings in some form. If one of the bearings fail, not only do the machines stop, but the assembly line also stops, and the resulting costs may be extremely high. For this reason, every bearing manufacturer makes every effort to ensure the highest quality for each bearing and that the end user subjects the bearing to careful use and properly maintains this component.

A bearing can be defined as a machine element which supports another moving machine element (known as a journal). It permits a relative motion between the contact surfaces of the members, while carrying the loads (static and dynamic). Some consideration will show that due to the relative motion between the contact surfaces, a certain amount of power is wasted in overcoming frictional resistance. If the rubbing surfaces are in direct contact, there will be rapid wear. In order to reduce frictional resistance, wear, and in some cases to carry away the heat generated, a layer of fluid (known as lubricant) may be provided. This lubricant is used to separate the journal and bearing, which allows the moving parts to move smoothly and helps to achieve more efficient machine operation. Some of the common bearing types are shown in Figure 1.

Figure 1. Common Types of Bearing Examples. SOURCE: [1]
Figure 1. Common Types of Bearing Examples. SOURCE: [1]
The main purpose of bearings is to prevent direct metal to metal contact between two elements that are in relative motion. This prevents friction, heat generation and ultimately, the wear and tear of parts. It also reduces the energy consumption required for moving parts. Additionally, they also transmit the load of the rotating element to the housing. This load may be axial, radial or a combination of both. Bearings also restrict the freedom of movement of moving parts to a predefined direction. With all these aspects, bearings are clearly important for the operations and the reliability of mechanical products. The right bearing can increase useful life of the machine, and enhance the machine’s overall performance. The wrong bearing can lead to premature failure, increased downtime, and increased wear and fatigue among all components of the machine. Read More

Notable Military Jet Engines

As a special tribute this Veterans Day, we decided to have a look at some of the most notable engines that have been used to propel military vehicles throughout history.

PW F135

Kicking off our list is the Pratt & Whitney 135 turbofan engine. The pride and joy of Pratt & Whitney’s military engine lineup, the 135 powers the US Military’s F35 Lightning II. Presently, two variants of the F135 are used in several different variants of the F35, although it should be noted that the F135 was developed specifically for the F35. The 3 engine variants are known as the F135-PW-100, the F135-PW-600, and the F135-PW-400, each for a different application of the F35. The 100 variant is used in the conventional take off and landing F35A, the 600 is used in the F135B for short take off and vertical landing F35B, and the 400 uses salt corrosion-resistant materials for the Naval variant F35C.

A Lockheed Martin F35A in fight, and an F35C taking off from the USS Abraham Lincoln

The F135 is capable of 28,000 lbf of thrust with the afterburner capability pushing thrust all the way to a whopping 43,000 lbf of thrust, making the Lightning II a supersonic STOVL aircraft suited to a wide variety of applications, as seen in the above illustrations. At the heart of the Pratt F135 are 3 fan stages, 6 compressor stages, and 3 turbine stages. In the STOVL variant, the F135-600 uses the same core components, but is also coupled to a drive shaft which connects the engine to the lift fans which were originally developed by Rolls-Royce, and give the Lightning the ability to hover, perform short distance takeoffs, and vertical landings.

A Royal Air Force RAF F35B Lightning II performing a vertical landing on a Royal Navy carrier.
A Royal Air Force RAF F35B Lightning II performing a vertical landing on a Royal Navy carrier.

The F35 by Pratt & Whitney and in turn the F35 Lightning II by Lockheed Martin represent the cutting edge in military aviation, and are the centerpieces of Pratt and Lockheed respectively. The Lightning variants and this line of turbofan engines will be in service with several branches of the US military and its allies around the world for the foreseeable future, with more iterations of the F135 to come. Read More

Modeling and Analysis of a Submarine’s Diesel Engine Lubrication System

Even in today’s age of underwater nuclear power, the majority of the world’s submarines still use diesel engines as their main source of mechanical power, as they have done since the turn of the century. A diesel engine must operate at its optimum performance to ensure a long and reliable life of engine components and to achieve peak efficiency. To operate or keep running a diesel engine at its optimum performance, the correct lubrication is required. General motors V16-278A type engine is normally found on fleet type submarines and is shown in Figure 1. This engine has two banks of 8 cylinders, each arranged in a V-design with 40 degree between banks. It is rated at 1600 bhp at 750 rpm and equipped with mechanical or solid type injection and has a uniform valve and port system of scavenging[1].

Figure 1. GM V16-278A, Submarine Diesel Engine. SOURCE: [1]
Figure 1. GM V16-278A, Submarine Diesel Engine. SOURCE: [1]
Lubrication system failure is the most expensive and frequent cause of damage, followed by incorrect maintenance and poor fuel management. Improper lubrication oil management combined with abrasive particle contamination cause the majority of damage. Therefore, an efficient lubrication system is essential to minimize risk of engine damage.

The purpose of an efficient lubrication system in a submarine’s diesel engine is to:

  1. Prevent metal to metal contact between moving parts in the engine;
  2. Aid in engine cooling by removing heat generated due to friction;
  3. Form a seal between the piston rings and the cylinder walls; and
  4. Aid in keeping the inside of the engine free of any debris or impurities which are introduced during engine operation.

­
All of these requirements should be met for an efficient lubrication system. To achieve this, the necessary amount of lubricant oil flow rate with appropriate pressure should circulate throughout the entire system, which includes each component such as bearings, gears,  piston cooling, and lubrication. If the required amount of flow rate does not flow or circulate properly to each corner of the system or rotating components, then cavitation will occur due to adverse pressure and excessive heat will be generated due to less mass flow rate. This will lead to major damage of engine components and reduced lifetime.
Read More

Hydrogen Energy: History, Applications, and Future Developments

A Brief History Of The Discovery Of Hydrogen 

The release of combustible gas during the interaction of metals and acids was observed as early as the 16th century. That is, during the formation of chemistry as a science. The famous English scientist Henry Cavendish had studied the substance since 1766, and gave it the name “combustible air”. When burned, this gas produced water. Unfortunately, the scientist’s adherence to the theory of phlogiston (the theory that suggested the existence of a fire-type element in materials) prevented him from coming to the correct conclusions.

Henry Cavendish (1731 – 1810)
Henry Cavendish (1731 – 1810) Source: https://www.butterflyfields.com/henry-cavendish-contributions-in-science/

In 1783 the French chemist and naturalist A. Lavoisier, together with the engineer J. Meunier, and with the help of special gas meters carried out the synthesis of water, and then its analysis by means of decomposition of water vapor with hot iron. Thus, scientists were able to come to the correct conclusions, and dismantle the phlogiston theory. They found that “combustible air” is not only a part of water but can also be obtained from it. In 1787, Lavoisier put forward the assumption that the gas under study is a simple substance and, accordingly, belongs to the number of primary chemical elements. He named it hydrogene (from the Greek words hydor – water + gennao – I give birth), that is, “giving birth to water”.

Antoine-Laurent
Antoine-Laurent
de Lavoisier (1743 – 1794). Source: https://educalingo.com/en/dic-en/lavoisier

A Little About The Properties Of Hydrogen 

In a free state and under normal conditions, hydrogen is a gas, and is colorless, odorless and tasteless. Hydrogen has almost 14.5 times mass less than air. It usually exists in combination with other elements, such as oxygen in water, carbon in methane, and organic compounds. Because hydrogen is chemically extremely active, it is rarely present as an unbound element. Read More